0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
GAN-Driven Image Generation for Metamaterial Absorbers Using Mean and Variance Encoding
نویسندگان :
Atefe Shahsavaripour
1
Mohammad Hossein Badiei
2
Leila Yousefi
3
Ahmad Kalhor
4
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
کلمات کلیدی :
Generative Adversarial Networks (GANs،Metamaterial Absorbers،Vari- ational Autoencoders (VAEs)،Deep Learning
چکیده :
In this work, we introduce an efficient methodology in the generation of complex images within a deep learning framework that combines Variational Autoencoders with Generative Adversarial Networks. In this work, the proposed methodology is applied in electromagnetics for the design of wideband metamaterial absorbers. This greatly simplifies the design process by encoding key image properties into compact low-dimensional representations, and each image can be represented with four numerical values that guide the GAN to generate high-quality outputs. This approach is very suitable in applications that demand efficient, accurate image generation, like in antenna design, electromagnetic imaging, and metamaterial structures. The present method will be used in the encoding of structural parameters within the latent space via deep VAE architecture while creating new feature vectors through the utilization of GANs in allowing creative and optimized designs concerning metamaterials. Simulated structures decoded and validated in CST Microwave Studio showed excellent absorption in a wide frequency range and for different angles of incidence. Such simplification of the design provides high-performance absorbing materials that could be used in critical applications of radar and telecommunications. Our results underline the transformative potential of machine learning, especially GANs, for solving complex electromagnetic design problems, opening new frontiers in material design and applications of neural networks.
لیست مقالات
لیست مقالات بایگانی شده
Defects Dynamics in Multilayer h-BN Resistive Switching Memories: A Molecular Dynamics Investigation
Omid Babaeinejad - Maryam Keshavarz Afshar - Ebrahim Nadimi
Efficient Full Adders for Approximate Arithmetic Units in the Image Processing Applications
Bahram Rashidi
New dental implants with micro-movement capability - biomechanical evaluation and evolution
Zahra Nouri - Nima Norouzi
VGG16-based Feature Fusion For Image Kyepoint Description
Javid Norouzi - Alireza Liaghat - Mohammad Sadegh Helfroush - Habibollah Danyali
طراحی بهینه ی آرایه ی تُنُک بی افزونگی با فاصله ی ناصحیح میان عناصر
سید محمد حسینی - محمود کریمی
Optimization of Novel L-shaped Gate All Around Junctionless Field Effect Transistor
Mohammad Tabarsi Sochelmaei - Arash Yazdanpanah Goharrizi
Improving the Accuracy of the Annotation Algorithm in Pattern-Based Tennis Game Video
Azam Bastanfard - Dariush Amirkhani
Bit Error Mitigation Using Unequal Resistivity Levels in Memristors
Amir Mohammad Hajisadeghi - Peiman Pourmomen - Hamid Reza Zarandi
تخمین بهینه پارامترهای مدل یک ماژول فتوولتائیک توسط الگوریتم بهینه سازی Mayfly
پریسا اکبری - نجمه اقبال
مدلسازی محدودیت های عملی سیستم های ترکیبی انرژی الکتریکی- حرارتی با استفاده از تبدیلات پیشرفته برنامهریزی ریاضی
ریحانه حسن آبادی - حسین شریف زاده
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.7.4