0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
GAN-Driven Image Generation for Metamaterial Absorbers Using Mean and Variance Encoding
نویسندگان :
Atefe Shahsavaripour
1
Mohammad Hossein Badiei
2
Leila Yousefi
3
Ahmad Kalhor
4
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
کلمات کلیدی :
Generative Adversarial Networks (GANs،Metamaterial Absorbers،Vari- ational Autoencoders (VAEs)،Deep Learning
چکیده :
In this work, we introduce an efficient methodology in the generation of complex images within a deep learning framework that combines Variational Autoencoders with Generative Adversarial Networks. In this work, the proposed methodology is applied in electromagnetics for the design of wideband metamaterial absorbers. This greatly simplifies the design process by encoding key image properties into compact low-dimensional representations, and each image can be represented with four numerical values that guide the GAN to generate high-quality outputs. This approach is very suitable in applications that demand efficient, accurate image generation, like in antenna design, electromagnetic imaging, and metamaterial structures. The present method will be used in the encoding of structural parameters within the latent space via deep VAE architecture while creating new feature vectors through the utilization of GANs in allowing creative and optimized designs concerning metamaterials. Simulated structures decoded and validated in CST Microwave Studio showed excellent absorption in a wide frequency range and for different angles of incidence. Such simplification of the design provides high-performance absorbing materials that could be used in critical applications of radar and telecommunications. Our results underline the transformative potential of machine learning, especially GANs, for solving complex electromagnetic design problems, opening new frontiers in material design and applications of neural networks.
لیست مقالات
لیست مقالات بایگانی شده
اندازهگیری علائم حیاتی چندین نفر با استفاده از رادار داپلر چرخان
فاطمه نقاش - محمدرضا شمسیان - فریدون بهنیا
A New Unsupervised Feature Learning Method for Object Recognition using Prior-Knowledge Data
Ashkan Farrokhi - Hadi Seyedarabi
An improved ECG segmentation method based on adaptive Hermite functions
Abazar Arabameri - Sajad Haghzad Klidbary
Higher Derivatives Extremum Seeking with Very Slow/ Drifting Sensor
Farzaneh Karimi - Mohsen Mojiri
RDOD: A Robust Distance-based Technique for Outlier Detection
Reza Heydari gharaei - Hossein Nezamabadi-pour
Single- and Multi-Hop BERT Question Classifier for Open-Domain Question Answering (SiMQC)
Faeze Zakaryapour Sayyad - Mahdi Bohlouli
Non-homogeneous interference suppression in OFDM array radars using direct data domain approach
Sima Shariatmadari
بهینه سازی استفاده از منابع شبکه های نوری با گرومینگ ترافیک در لایهی MPLS
محمدعلی سالک قادری - آرش رضایی - لطف اله بیگی
Forecasting Crude Oil Prices using improved deep belief network (IDBN) and long-term short-term memory network (LSTM)
Mohammad Mahdi Lotfi Heravi - Mahsa Khorrampanah - Monireh Houshmand
A K-Band Ultra-Low-Power High-Linearity Down-Conversion Mixer in CMOS Technology
Kayvan Qolami - جواد یاوندحسنی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4