0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
GAN-Driven Image Generation for Metamaterial Absorbers Using Mean and Variance Encoding
نویسندگان :
Atefe Shahsavaripour
1
Mohammad Hossein Badiei
2
Leila Yousefi
3
Ahmad Kalhor
4
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
کلمات کلیدی :
Generative Adversarial Networks (GANs،Metamaterial Absorbers،Vari- ational Autoencoders (VAEs)،Deep Learning
چکیده :
In this work, we introduce an efficient methodology in the generation of complex images within a deep learning framework that combines Variational Autoencoders with Generative Adversarial Networks. In this work, the proposed methodology is applied in electromagnetics for the design of wideband metamaterial absorbers. This greatly simplifies the design process by encoding key image properties into compact low-dimensional representations, and each image can be represented with four numerical values that guide the GAN to generate high-quality outputs. This approach is very suitable in applications that demand efficient, accurate image generation, like in antenna design, electromagnetic imaging, and metamaterial structures. The present method will be used in the encoding of structural parameters within the latent space via deep VAE architecture while creating new feature vectors through the utilization of GANs in allowing creative and optimized designs concerning metamaterials. Simulated structures decoded and validated in CST Microwave Studio showed excellent absorption in a wide frequency range and for different angles of incidence. Such simplification of the design provides high-performance absorbing materials that could be used in critical applications of radar and telecommunications. Our results underline the transformative potential of machine learning, especially GANs, for solving complex electromagnetic design problems, opening new frontiers in material design and applications of neural networks.
لیست مقالات
لیست مقالات بایگانی شده
Terahertz transceiver front-end based on spatiotemporally modulated graphene-based structures
Mahsa Valizadeh - Leila Yousefi - MirFaez Miri
A Novel Estimation Law for Impedance-Controlled Bilateral Teleoperation to Enhance Human-Environment Interaction
Mobina Kameli - Mohammad Motaharifar - Negin Sayyaf
Performance Analysis of the Modified Flux-Coupling-Type SFCL in VSC-HVDC System
Mohammad Khakroei - Ashkan Mirzaei Rajeooni - Mahdi Rahimi Pirbasti - Hossein Heydari
Design of a High-Efficiency Balanced Power Amplifier with 68% Fractional Bandwidth
Fatemeh Mohabati - Marzieh Chegini - Mahmoud Kamarei
Refractive Index Sensor Based on Photonic Crystal Nanocavities
Mohammad Zargarzadeh - Mohammad Hasan Yavari - Mohammad Heydari - Mohammad Hasan Rezaei
Effective Service Restoration in Electrical Distribution Networks Using a Bi-Stage Algorithm
Qasem Asadi - Amir Amini - Hamid Falaghi - Maryam Ramezani
Noninvasive Blood Pressure Classification Based on Photoplethysmography Using Machine Learning Techniques
Hanieh Mohammadi - Bahram Tarvirdizadeh - Khalil Alipour - Mohammad Ghamari
مدل سازی ریزالور دو درجه آزادی خطی با استفاده از تابع سیمپیچی اصلاح شده
فرید توتونچیان - رضا فریادرس
High-Resolution Remote Sensing Image Captioning Based on Structured Attention and SAM Network
Yassin Riyazi - Seyyed Mostafa Sadjadi - Abbas Zohrevand - Reshad Hosseini
Improving Artificial Neural Network Performance Using Hybrid Activation Function
Morteza Taheri - Sajad Haghzad Klidbary
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3