0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Kernel-Based Embedded Feature Selection for Motor Imagery Based BCI
نویسندگان :
Mehdi Kamandar
1
1- دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته
کلمات کلیدی :
Brain–computer interface (BCI)،Electroencephalogram (EEG)،(Motor imagery (MI،)،Support vector machine (SVM)،Kernel-target alignment (KTA)،Embedded feature selection،l1 regularization،minibatch proximal gradient ascent
چکیده :
Brain-computer interface (BCI) based on motor imagery (MI) classification using scalp recorded multi-channel EEG signal play a major role in the control of artificial limbs and machines by people with severe disabilities. The most popular features are band power of EEG signals in frequency sub-bands in a relatively wide frequency band (e. g., 8-30 Hz) in different time windows of imagination period. The effectiveness of these features is highly dependent on the sub-bands and time windows adopted, since the optimal sub-bands and time windows is generally subject-specific. The nonlinear support vector machine (SVM) with Gaussian kernel is an excellent classifier for MI classification. In this paper, the SVM with an anisotropic Gaussian kernel with a special scaling factors for each feature is used, instead of one scale factor for all features. The scaling factors are tuned by maximizing the kernel-target alignment criterion with l1 regularization. Some of the scaling factors will be zero after maximization due to l1 regularization, that is equivalent to removing corresponding features from classification processes. Therefore, an embedded feature selection is also done to remove the destructive effect of irrelevant and redundant features. The average accuracy of the SVM classifier with anisotropic Gaussian kernel for four subjects in BCI IV-1 dataset is about 10% more than the SVM with isotropic Gaussian kernel.
لیست مقالات
لیست مقالات بایگانی شده
Job Title Prediction from Tweets Using Word Embedding and Deep Neural Networks
Shayan Vassef - Ramin Toosi - Mohammad Ali Akhaee
A model to measure cyber security maturity at the national level
Mahdi Omrani - Masoud Shafiee - Siavash Khorsandi
کاربرد داده کاوی در بخش مشترکین صنعت توزیع برق
سارا علی پور - محمودرضا حقی فام
Blind angle and angular range detection in planar and limited-view geometries for photoacoustic tomography
Soheil Hakakzadeh - Zahra Kavehvash
Higher-order semi-blind source separation approaches using Canonical Polyadic (CP) decomposition
Mohammad Jalilpour Monesi - Sepideh Hajipour Sardouie
Optimized ANFIS-based Control Design Using Genetic Algorithm to Obtain the Vaccination and Isolation Rates for the COVID-19
Zohreh Abbasi - Mohsen Shafieirad - Amir Hossein Amiri Mehra - Iman Zamani
Privacy-Preserving Model Predictive Control Using Secure Multi-Party Computation
Saeed Adelipour - Mohammad Haeri
Network-based functional connectivity in MDD with suicide ideation before and after TMS: An fMRI case study
Moslem Khafi - Morteza Fattahi - Hamid Soltanian-Zadeh - Reza Rostami
Non-Invasive Blood Pressure Estimation using Poincaré Plot Indices of Photoplethysmography Signals
Fatemeh Shoeibi - Esmaeil Najafiaghdam - Afshin Ebrahimi
Gesture recognition of hand movements using mechanomyography
Ashkan Elyasinia - Raheleh Davoodi - Sedighe Dehghani
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0