0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Kernel-Based Embedded Feature Selection for Motor Imagery Based BCI
نویسندگان :
Mehdi Kamandar
1
1- دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته
کلمات کلیدی :
Brain–computer interface (BCI)،Electroencephalogram (EEG)،(Motor imagery (MI،)،Support vector machine (SVM)،Kernel-target alignment (KTA)،Embedded feature selection،l1 regularization،minibatch proximal gradient ascent
چکیده :
Brain-computer interface (BCI) based on motor imagery (MI) classification using scalp recorded multi-channel EEG signal play a major role in the control of artificial limbs and machines by people with severe disabilities. The most popular features are band power of EEG signals in frequency sub-bands in a relatively wide frequency band (e. g., 8-30 Hz) in different time windows of imagination period. The effectiveness of these features is highly dependent on the sub-bands and time windows adopted, since the optimal sub-bands and time windows is generally subject-specific. The nonlinear support vector machine (SVM) with Gaussian kernel is an excellent classifier for MI classification. In this paper, the SVM with an anisotropic Gaussian kernel with a special scaling factors for each feature is used, instead of one scale factor for all features. The scaling factors are tuned by maximizing the kernel-target alignment criterion with l1 regularization. Some of the scaling factors will be zero after maximization due to l1 regularization, that is equivalent to removing corresponding features from classification processes. Therefore, an embedded feature selection is also done to remove the destructive effect of irrelevant and redundant features. The average accuracy of the SVM classifier with anisotropic Gaussian kernel for four subjects in BCI IV-1 dataset is about 10% more than the SVM with isotropic Gaussian kernel.
لیست مقالات
لیست مقالات بایگانی شده
Integrated expansion planning of the distribution network and distributed generations considering energy storage systems, electric vehicles charging stations, and daily load modeling
Ahmad Mohammadi Pour - Mehrdad Setayesh Nazar
Design of Dual-beam Orthogonal Circular Polarized Leaky-wave Holographic Antenna
Mohammad Amin Chaychizadeh - Nader Komjani
Heart Abnormality Classification by Phonocardiogram Analysis Using Fusion in Feature and Decision Levels
Hossein Rahmati - Hassan Ghassemian - Maryam Imani
Scalable Multipurpose Smart Indoor Lighting System for Wireless Sensor Networks
Atefesadat Seyedolhosseini - Reza Nemati - Hossein Maghsoumi - Shokrollah Karimian - Nasser Masoumi
تشخیص حرکت دست با تکنیک ORB و شبکه عصبی پیچشی
مهین مقبلی - فرحناز مهنا - پوریا جعفری
Design and Implementation of CAN Bus Monitoring Module for Lithium Battery Management System
Shakila Kazempourdizaji - Amir Mohammad Moazami Goudarzi - Majid Shalchian
Innovative Pathway Optimization for Autonomous Drones in Urban Landscapes Using Integrated Techniques
Seyed Ahmad Abtahi - M.A. Amiri Atashgah - Bahram Tarvirdizadeh - Mohammad Habashiniak
A compact 5G MIMO antenna with reduced mutual coupling
Marziyeh Amiri - Ali Ghafoorzadeh-yazdi - Abbas-Ali Heidari
تجزیه و تحلیل امواج فیبریلاتور دهلیزی به منظور طبقهبندی AF با استفاده از موجک لیدر
سارا میهن دوست
Model Predictive Control for a 3-DoF Suspended Cable Robot Based on Laguerre Functions
Shiva Khoshkam - Mohammad A. Khosravi - Rasul FesharakiFard
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.7.4