0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Kernel-Based Embedded Feature Selection for Motor Imagery Based BCI
نویسندگان :
Mehdi Kamandar
1
1- دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته
کلمات کلیدی :
Brain–computer interface (BCI)،Electroencephalogram (EEG)،(Motor imagery (MI،)،Support vector machine (SVM)،Kernel-target alignment (KTA)،Embedded feature selection،l1 regularization،minibatch proximal gradient ascent
چکیده :
Brain-computer interface (BCI) based on motor imagery (MI) classification using scalp recorded multi-channel EEG signal play a major role in the control of artificial limbs and machines by people with severe disabilities. The most popular features are band power of EEG signals in frequency sub-bands in a relatively wide frequency band (e. g., 8-30 Hz) in different time windows of imagination period. The effectiveness of these features is highly dependent on the sub-bands and time windows adopted, since the optimal sub-bands and time windows is generally subject-specific. The nonlinear support vector machine (SVM) with Gaussian kernel is an excellent classifier for MI classification. In this paper, the SVM with an anisotropic Gaussian kernel with a special scaling factors for each feature is used, instead of one scale factor for all features. The scaling factors are tuned by maximizing the kernel-target alignment criterion with l1 regularization. Some of the scaling factors will be zero after maximization due to l1 regularization, that is equivalent to removing corresponding features from classification processes. Therefore, an embedded feature selection is also done to remove the destructive effect of irrelevant and redundant features. The average accuracy of the SVM classifier with anisotropic Gaussian kernel for four subjects in BCI IV-1 dataset is about 10% more than the SVM with isotropic Gaussian kernel.
لیست مقالات
لیست مقالات بایگانی شده
A Time-Based Analogue-to-Digital Converter for ECG Applications
Atiyeh Karimlou - Mohammad Yavari
Artificial Intelligence-Based Prediction of Flexibility Requirements in Power Systems
MohammadReza Zarei-Jeliani - Mahmud Fotuhi-Firuzabad - Niloofar Pourghaderi
Si/SiO2/Ag optical sensor
Alireza Karimpour - Mehrdad Naemi Dehkharghani - Faramarz Hossein-babaei
Experimental Study and Implementation of a Generalized Predictive Controller on Delta Parallel Robot Based on Actuator Identification
Hasan Jalali - Behnam Moradkhani - Hossein Damavandi - Mehdi Tale Masouleh - Ahmad Kalhor
Low Complexity Multi-User Indoor Localization Using Reconfigurable Intelligent Surface
Nooshin Afzali - Mohammad Javad Omidi - Keivan Navaie - Naghmeh Sadat Moayedian
Ultra-broadband and compact beamsplitters using subwavelength-grating-assisted zero gap directional couplers
Kamalodin Arik - Mahmood Akbari - Amin Khavasi
اینورتر چندسطحی منبع ولتاژ جدید با هدف کاهش سوئیچ برای سطوح بالا
علی سیفی - سید حسین حسینی - مهرداد طرقدار حق - مهران صباحی - مجید حسین پور
Family of Multifunctional Controllable Converters for Grid, Battery, and PV-Powered EV Charging Station Applications
Homayon Soltani Gohari - Amir Safaeinasab - Karim Abbaszadeh
طراحی ماتریس باتلر 8×4 در ساختارSIW با کاهش سطح گلبرگ جانبی در باند فرکانسی 60GHz
زهرا مهرزاد - غلامرضا مرادی - ایاز قربانی
Extended Phase Shift Control in Dual Active Bridge Converter Considering Magnetizing Inductance of Transformer
Masood Soleimanifard - Ali Yazdian Varjani
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2