0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Kernel-Based Embedded Feature Selection for Motor Imagery Based BCI
نویسندگان :
Mehdi Kamandar
1
1- دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته
کلمات کلیدی :
Brain–computer interface (BCI)،Electroencephalogram (EEG)،(Motor imagery (MI،)،Support vector machine (SVM)،Kernel-target alignment (KTA)،Embedded feature selection،l1 regularization،minibatch proximal gradient ascent
چکیده :
Brain-computer interface (BCI) based on motor imagery (MI) classification using scalp recorded multi-channel EEG signal play a major role in the control of artificial limbs and machines by people with severe disabilities. The most popular features are band power of EEG signals in frequency sub-bands in a relatively wide frequency band (e. g., 8-30 Hz) in different time windows of imagination period. The effectiveness of these features is highly dependent on the sub-bands and time windows adopted, since the optimal sub-bands and time windows is generally subject-specific. The nonlinear support vector machine (SVM) with Gaussian kernel is an excellent classifier for MI classification. In this paper, the SVM with an anisotropic Gaussian kernel with a special scaling factors for each feature is used, instead of one scale factor for all features. The scaling factors are tuned by maximizing the kernel-target alignment criterion with l1 regularization. Some of the scaling factors will be zero after maximization due to l1 regularization, that is equivalent to removing corresponding features from classification processes. Therefore, an embedded feature selection is also done to remove the destructive effect of irrelevant and redundant features. The average accuracy of the SVM classifier with anisotropic Gaussian kernel for four subjects in BCI IV-1 dataset is about 10% more than the SVM with isotropic Gaussian kernel.
لیست مقالات
لیست مقالات بایگانی شده
ترکیب الگوریتم بهینهساز ازدحام ذرات و شبکه عصبی همگشتی رزنت در مدلسازی و طراحی سطوح انتخابگر فرکانس فراکتالی
امین مزروعی آبکنار - مجتبی مداح علی - مرضیه نصیریان
Numerical study of different pillar shapes using deterministic lateral displacement method for particle separation
Mohammad Mahdi Eskandari Sani - Mahdi Aliverdinia - Mahdi Moghimi Zand
Synergy of Deep Learning and Artificial Potential Field Methods for Robot Path Planning in the Presence of Static and Dynamic Obstacles
Mohammad Amin Basiri - Shirin Chehelgami - Erfan Ashtari - Mehdi Tale Masouleh - Ahmad Kalhor
Robust Optimal Hardening for Resilience Enhancement of Power System
Fardin Hasanzad - Hassan Rastegar
Addressing Death from Heart Failure Using RACER Algorithm
Mohammad Mirsafaei - Alireza Basiri
Breast Cancer Detection by Time-Reversal Imaging Using Ultra-Wideband Modified Circular Patch Antenna Array
Mohammad Haghpanah - Zahra Ghattan Kashani - Atefeh Khalili Param
Enhancing Precision in Dermoscopic Imaging using TransUNet and CASCADE
Mahdi Niknejad - Mahdi Firouzbakht - Maryam Amirmazlaghani
طراحی آنتن سرآتش پهن باند مبتنی بر پلاسمون پلاریتونهای سطحی جعلی
فرشاد ارغنده - بیژن عباسی آرند - مریم حصاری شرمه
تخمین کانال های پهپاد به پهپاد با استفاده از فیلتر کالمن توسعه یافته
فهیمه رنجبر - محمدعلی سبقتی
High-Efficiency Soft-Switched Quadratic Ultra-High Step-Up DC-DC Converter with Low Voltage Stress on Semiconductors
Ali Nadermohammadi - Ali Seifi - Hamed Abdi - Pouya Abolhassani - Seyed Hossein Hosseini - Ebrahim Babaei
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2