0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Kernel-Based Embedded Feature Selection for Motor Imagery Based BCI
نویسندگان :
Mehdi Kamandar
1
1- دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته
کلمات کلیدی :
Brain–computer interface (BCI)،Electroencephalogram (EEG)،(Motor imagery (MI،)،Support vector machine (SVM)،Kernel-target alignment (KTA)،Embedded feature selection،l1 regularization،minibatch proximal gradient ascent
چکیده :
Brain-computer interface (BCI) based on motor imagery (MI) classification using scalp recorded multi-channel EEG signal play a major role in the control of artificial limbs and machines by people with severe disabilities. The most popular features are band power of EEG signals in frequency sub-bands in a relatively wide frequency band (e. g., 8-30 Hz) in different time windows of imagination period. The effectiveness of these features is highly dependent on the sub-bands and time windows adopted, since the optimal sub-bands and time windows is generally subject-specific. The nonlinear support vector machine (SVM) with Gaussian kernel is an excellent classifier for MI classification. In this paper, the SVM with an anisotropic Gaussian kernel with a special scaling factors for each feature is used, instead of one scale factor for all features. The scaling factors are tuned by maximizing the kernel-target alignment criterion with l1 regularization. Some of the scaling factors will be zero after maximization due to l1 regularization, that is equivalent to removing corresponding features from classification processes. Therefore, an embedded feature selection is also done to remove the destructive effect of irrelevant and redundant features. The average accuracy of the SVM classifier with anisotropic Gaussian kernel for four subjects in BCI IV-1 dataset is about 10% more than the SVM with isotropic Gaussian kernel.
لیست مقالات
لیست مقالات بایگانی شده
A Time-Based Analogue-to-Digital Converter for ECG Applications
Atiyeh Karimlou - Mohammad Yavari
Enhanced Current Commutation Drive Circuit for Hybrid DC Circuit Breaker
Alireza Jaafari - Sadegh Mohsenzade - Ali Asghar Razi-Kazemi
Improving Quarter-Wavelength Resonator Technique for Parasitic Cancellation of the ESD Protection Diode for High-Frequency Applications
Emadodin Zia Khodadadian - Mojtaba Joodaki
Family of Soft-Switched Single-Switch Switched-Resonator Converters with Low Component Count
Maryam Hajilou - Siamak Khalili - Hosein Farzanehfard
Net Load Forecasting of Household Prosumers Considering Deep Reinforcement Learning
Behzad Motallebi Azar - Rasool Kazemzadeh - Morteza Zare Oskouei - Behnam Mohammadi-Ivatloo
تاثیر روشهای کاهش سناریو و عدم قطعیتهای چندمتغیره بر عملکرد هاب انرژی
مهسا نعمتی فر - حسین شریف زاده
Power Consumption and I/Q-to-Phase Analysis in Direct Demodulation Approaches
Mir mahdi Safari - Jafar Pourrostam
Optimal Placement of Unified Power Flow Controller in Power System Considering Transient Stability and Voltage Stability Criteria
Esmail Zahmatkeshan - Mohsen Bandekhoda
Investigating Validity and Reliability of The Features Extracted by a 5R Vertical Robot for Arm Motion and Learning Assessment
Sarvenaz Bourbour - Fariba Bahrami Boodelalou - Ghorban Taghizadeh
Clustering of Fuzzy Data Based on Particle Swarm Optimization
Najme Ghanbari - Seyed-hamid Zahiri - Hadi Shahraki
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3