0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Kernel-Based Embedded Feature Selection for Motor Imagery Based BCI
نویسندگان :
Mehdi Kamandar
1
1- دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته
کلمات کلیدی :
Brain–computer interface (BCI)،Electroencephalogram (EEG)،(Motor imagery (MI،)،Support vector machine (SVM)،Kernel-target alignment (KTA)،Embedded feature selection،l1 regularization،minibatch proximal gradient ascent
چکیده :
Brain-computer interface (BCI) based on motor imagery (MI) classification using scalp recorded multi-channel EEG signal play a major role in the control of artificial limbs and machines by people with severe disabilities. The most popular features are band power of EEG signals in frequency sub-bands in a relatively wide frequency band (e. g., 8-30 Hz) in different time windows of imagination period. The effectiveness of these features is highly dependent on the sub-bands and time windows adopted, since the optimal sub-bands and time windows is generally subject-specific. The nonlinear support vector machine (SVM) with Gaussian kernel is an excellent classifier for MI classification. In this paper, the SVM with an anisotropic Gaussian kernel with a special scaling factors for each feature is used, instead of one scale factor for all features. The scaling factors are tuned by maximizing the kernel-target alignment criterion with l1 regularization. Some of the scaling factors will be zero after maximization due to l1 regularization, that is equivalent to removing corresponding features from classification processes. Therefore, an embedded feature selection is also done to remove the destructive effect of irrelevant and redundant features. The average accuracy of the SVM classifier with anisotropic Gaussian kernel for four subjects in BCI IV-1 dataset is about 10% more than the SVM with isotropic Gaussian kernel.
لیست مقالات
لیست مقالات بایگانی شده
Design and Determing Two Separate Rotor Axial Flux Permanent Magnet Motor Load and Efficinecy
Siamak Omrani - Ahmad Darabi
Scattering by an array of PEC cylinders in ferrite media using spectral technique
Zahra Bahrami - Asghar Keshtkar - Ayaz Ghorbani
Ultra-wideband RCS Reduction Using Checkerboard Configuration of Bed of Nails
Sadegh Sarjoughian - Mohsen Maddahali - Ahmad Bakhtafrouz
Investigation the Effects of Partial discharge Pulse Characteristics on its Propagation in Stator Windings
Arash Abyaz - Mohammad Hamed Samimi - Amir Abbas Shayegani Akmal
An Overview on the primary control of VSC-MTDC systems
Seyed Mohsen Alavi - Reza Ghazi
Employing Integrated Quantum Photonic Computers for Gaussian Boson Sampling
Mehrdad Ghasemi - Hassan Kaatuzian - Houshyar Noshad - Mahmood Hassani - Mobin Motaharifar - Mahdi NoroozOliaei
تاثیر روشهای کاهش سناریو و عدم قطعیتهای چندمتغیره بر عملکرد هاب انرژی
مهسا نعمتی فر - حسین شریف زاده
A fair-optimal solution for multi-objective optimization based on Shapley value
Mohammadreza Mohammadhasani - Habib Rajabi Mashhadi
ارائه روشی جهت بهبود عملکرد شبکههای بیسیم حسگر ناهمگون مبتنی بر برداشت انرژی
محمد فرشته حکمت - علیرضا کشاورز حداد
Machine Learning Approach for Retrieval of Complex Permittivity in Cavity Resonators
Kianoosh Kazemi - Gholamreza Moradi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2