0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Synergy of Deep Learning and Artificial Potential Field Methods for Robot Path Planning in the Presence of Static and Dynamic Obstacles
نویسندگان :
Mohammad Amin Basiri
1
Shirin Chehelgami
2
Erfan Ashtari
3
Mehdi Tale Masouleh
4
Ahmad Kalhor
5
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
5- دانشگاه تهران
کلمات کلیدی :
Robot Path Planning،Deep learning،Artificial Potential field،Global and local Path Planning،Static and Dynamics Obstacles avoidance
چکیده :
In a fast-changing world we are in today, unmanned vehicles are displacing old, obsolete and frustrating tasks. Since unmanned vehicles are intended to work in an environment without any conduction, finding a collision-free path of movement is of paramount importance and a definite asset in practice. In this paper, a complete global and local path planning method is proposed for avoiding both static and dynamic obstacles. First, a method for generating numerous obstacle-free paths from random pairs of start and goal points is introduced. Next, a novel deep-learning approach is proposed in order to train the robot in an environment free of moving obstacles which contains only fixed obstacles. After extracting the desired via points, an efficient Artificial Potential Field(APF) approach for attaining local path planning is introduced with the aim of avoiding dynamic obstacles while the robot travels through the aforementioned via points. The proposed method can be well extended to different platforms such as mobile robots, arm robots, quadrotors, etc; in this paper, both local and global path planning methods are implemented on a simulated quadrotor to examine the robot's performance for both approaches. Furthermore, it has been revealed that implementing both approaches should be implemented seamlessly in order to attain a complete efficient path planning with the presence of both static and dynamics obstacles.
لیست مقالات
لیست مقالات بایگانی شده
Integrating Model-Agnostic Meta-Learning with Advanced Language Embeddings for Few-Shot Intent Classification
Ali Rahimi - Hadi Veisi
آشکارسازی گاز فسژن با استفاده از بروفن تک لایه 12 β: شبیه سازی با استفاده از نظریه تابعی چگالی
صادق رنجبر - رزا صفایی - محمدحسین شیخی
The Effect of Optimal PMU Placement in Power System State Estimation considering the Seasonal Load Curve
Seyed Hamed Mir Mohammad Ali Roudaki - Mehrdad Abedi - Iraj Pourkeivani
Deep Learning based Electrical Load Forecasting using Temporal Fusion Transformer and Trend-Seasonal Decomposition
Ehsan Saadipour-Hanzaie - Mohammad-Amin Pourmoosavi - Turaj Amraee
Simulation and Measurement of a Large Reverberation Chamber (LRC) Loaded by Metal Elements
Mojtaba Basravi - ZakerHossein Firouzeh - Hadi Aliakbarian
ارائه یک روش دو مرحلهای مبتنی بر حسگری فشرده برای تخمین زاویه ورود در آرایه
مهدی محمدی پرستو - محمود مدرس هاشمی
Control of a Wheeled Robot in the Presence of Wheels Sliding Using Robust Adaptive Control in Differential Game Format
Alireza Azimi - Roya Amjadifard - Aliakbar Ghasemzadeh
Posture Stabilization of Tractor-Trailer Wheeled Mobile Robot Using Nonlinear MPC
Kevin Babakhanloo - Khalil Alipour - Bahram Tarvirdizadeh - Majid Sorouri - Mohammad Ghamari
Defense Against Spectrum Sensing Data Falsification Attack in Cognitive Radio Networks Using Machine Learning
Nazanin Parhizgar - Ali Jamshidi - Peyman Setoodeh
Designing a Suitable Antenna and Simple Receiver for Detection of Partial Discharge in the UHF Band
Seyed Hossein Kasaei - Mohammad Hamed Samimi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.7.4