0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Synergy of Deep Learning and Artificial Potential Field Methods for Robot Path Planning in the Presence of Static and Dynamic Obstacles
نویسندگان :
Mohammad Amin Basiri
1
Shirin Chehelgami
2
Erfan Ashtari
3
Mehdi Tale Masouleh
4
Ahmad Kalhor
5
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
5- دانشگاه تهران
کلمات کلیدی :
Robot Path Planning،Deep learning،Artificial Potential field،Global and local Path Planning،Static and Dynamics Obstacles avoidance
چکیده :
In a fast-changing world we are in today, unmanned vehicles are displacing old, obsolete and frustrating tasks. Since unmanned vehicles are intended to work in an environment without any conduction, finding a collision-free path of movement is of paramount importance and a definite asset in practice. In this paper, a complete global and local path planning method is proposed for avoiding both static and dynamic obstacles. First, a method for generating numerous obstacle-free paths from random pairs of start and goal points is introduced. Next, a novel deep-learning approach is proposed in order to train the robot in an environment free of moving obstacles which contains only fixed obstacles. After extracting the desired via points, an efficient Artificial Potential Field(APF) approach for attaining local path planning is introduced with the aim of avoiding dynamic obstacles while the robot travels through the aforementioned via points. The proposed method can be well extended to different platforms such as mobile robots, arm robots, quadrotors, etc; in this paper, both local and global path planning methods are implemented on a simulated quadrotor to examine the robot's performance for both approaches. Furthermore, it has been revealed that implementing both approaches should be implemented seamlessly in order to attain a complete efficient path planning with the presence of both static and dynamics obstacles.
لیست مقالات
لیست مقالات بایگانی شده
Mapping Human Grasping to 3-Finger Grippers: A Deep Learning Perspective
Fatemeh Naeinian - Elnaz Balazadeh - Mehdi Tale Masouleh
Experimental Study of Pick and Place Operation for Packaging Using Delta Parallel Robot with Two-Fingered Gripper
Mona Mohades Mojtahedi - Arvin Mohammadi - Mehdi Tale Masouleh
حسگر زیستی نانومتری حساس با زیرلایه غیرهمگن برای تشخیص سلول های سرطانی
پریسا مرادی هارونی - محمود رفائی بوکت
ارائه یک مبدل DC-DC منبع امپدانسی تک سوئیچه تک هسته مغناطیسی فوق افزاینده مناسب برای استفاده در کاربرد های انرژی نو
معصومه پرستش - سجاد رستمی
Noninvasive Blood Pressure Classification Based on Photoplethysmography Using Machine Learning Techniques
Hanieh Mohammadi - Bahram Tarvirdizadeh - Khalil Alipour - Mohammad Ghamari
Error Probability Analysis of Non-Orthogonal Multiple Access
Rozita Shafie - AliAkbar Tadaion - Zolfa Zeinalpour-Yazdi
Combination of Classifiers to Detecting Grade of Gliblastoma using MRS
Roqaie Moqadam - Nazila Loghmani - Meysam Siyahmansoori - Armin Allahverdy
Non-contact Radar Technology and Machine Learning for Automated Sleep Apnea-Hypopnea Syndrome Detection
ُSaman Faridsoltani - Mohaddeseh Sadeghi - Zahra Rahmani - Somayyeh Chamaani
A Method Based on Attention Mechanism using Bidirectional Long-Short Term Memory(BLSTM) for Question Answering
Seyed Vahid Moravvej - Mohammad Javad Maleki Kahaki - Moein Salimi Sartakhti - Abdolreza Mirzaei
An improved ECG segmentation method based on adaptive Hermite functions
Abazar Arabameri - Sajad Haghzad Klidbary
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0