0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Synergy of Deep Learning and Artificial Potential Field Methods for Robot Path Planning in the Presence of Static and Dynamic Obstacles
نویسندگان :
Mohammad Amin Basiri
1
Shirin Chehelgami
2
Erfan Ashtari
3
Mehdi Tale Masouleh
4
Ahmad Kalhor
5
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
5- دانشگاه تهران
کلمات کلیدی :
Robot Path Planning،Deep learning،Artificial Potential field،Global and local Path Planning،Static and Dynamics Obstacles avoidance
چکیده :
In a fast-changing world we are in today, unmanned vehicles are displacing old, obsolete and frustrating tasks. Since unmanned vehicles are intended to work in an environment without any conduction, finding a collision-free path of movement is of paramount importance and a definite asset in practice. In this paper, a complete global and local path planning method is proposed for avoiding both static and dynamic obstacles. First, a method for generating numerous obstacle-free paths from random pairs of start and goal points is introduced. Next, a novel deep-learning approach is proposed in order to train the robot in an environment free of moving obstacles which contains only fixed obstacles. After extracting the desired via points, an efficient Artificial Potential Field(APF) approach for attaining local path planning is introduced with the aim of avoiding dynamic obstacles while the robot travels through the aforementioned via points. The proposed method can be well extended to different platforms such as mobile robots, arm robots, quadrotors, etc; in this paper, both local and global path planning methods are implemented on a simulated quadrotor to examine the robot's performance for both approaches. Furthermore, it has been revealed that implementing both approaches should be implemented seamlessly in order to attain a complete efficient path planning with the presence of both static and dynamics obstacles.
لیست مقالات
لیست مقالات بایگانی شده
بهبود تخمین واریانس نویز با بهره گیری از واریانس تغییرات سیگنال
مجید دهقانیزاده - مسعودرضا آقابزرگی
Integration of P2G and Renewables in Stochastic Day-ahead Electricity-Gas Scheduling
Mojtaba Choghaei - Mohammad Kazem Sheikh-El-Eslami
Finite time disturbance observer based output feedback fractional order nonsingular terminal sliding mode attitude control of rigid satellites
Shirko Piri - Jalil Beyramzad - Esmaeel Khanmirza
Design and Implementation of a Flexible CNN Accelerator for Fast Real-Time Object Detection on FPGA
Emadodin Sakhaee - Mahdi Kalbasi
Multinomial Emoji Prediction Using Deep Bidirectional Transformers and Topic Modeling
Zahra Ebrahimian - Ramin Toosi - Mohammad Ali Akhaee
تفکیک منبع تخلیه جزئی شدید در کابل های قدرت به کمک روش یادگیری عمیق
سید محسن علی پور - کیان شاهین فر - سید محمد شهرتاش
Enhancing SCGAN’s Disentangled Representation Learning with Contrastive SSIM Similarity Constraints
Iman Yazdanpanah - Ali Eslamian
Distributed Data Processing for Multi-Agent Systems Via Wave Model
Saeedreza Tofighi - Masoud Shafiee
Dominant Control Set Selection in Clustered Complex Brain Network
Sana Motallebi - Mohammad Javad Yazdanpanah - Abdol-Hossein Vahabie
CNN-LSTM model for Confusion Classification; using Single-Channel EEG
Amirhossein Aran - Zahra Ghanbari - Mohammad Hassan Moradi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1