0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Synergy of Deep Learning and Artificial Potential Field Methods for Robot Path Planning in the Presence of Static and Dynamic Obstacles
نویسندگان :
Mohammad Amin Basiri
1
Shirin Chehelgami
2
Erfan Ashtari
3
Mehdi Tale Masouleh
4
Ahmad Kalhor
5
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
5- دانشگاه تهران
کلمات کلیدی :
Robot Path Planning،Deep learning،Artificial Potential field،Global and local Path Planning،Static and Dynamics Obstacles avoidance
چکیده :
In a fast-changing world we are in today, unmanned vehicles are displacing old, obsolete and frustrating tasks. Since unmanned vehicles are intended to work in an environment without any conduction, finding a collision-free path of movement is of paramount importance and a definite asset in practice. In this paper, a complete global and local path planning method is proposed for avoiding both static and dynamic obstacles. First, a method for generating numerous obstacle-free paths from random pairs of start and goal points is introduced. Next, a novel deep-learning approach is proposed in order to train the robot in an environment free of moving obstacles which contains only fixed obstacles. After extracting the desired via points, an efficient Artificial Potential Field(APF) approach for attaining local path planning is introduced with the aim of avoiding dynamic obstacles while the robot travels through the aforementioned via points. The proposed method can be well extended to different platforms such as mobile robots, arm robots, quadrotors, etc; in this paper, both local and global path planning methods are implemented on a simulated quadrotor to examine the robot's performance for both approaches. Furthermore, it has been revealed that implementing both approaches should be implemented seamlessly in order to attain a complete efficient path planning with the presence of both static and dynamics obstacles.
لیست مقالات
لیست مقالات بایگانی شده
Deep Convolutional Neural Network for ADHD Classification using resting-state fMRI
MohammadHadi Firouzi - Maliheh Ahmadi - Kamran Kazemi - Mohammad Sadegh Helfroush - Ardalan Aarabi
Low Cost Implementation of Neural Networks Based on Stochastic Computing
Hadi Jahanirad - Ahmad Menbari
Efficient NVIS HF Hinged Half-Loop Vehicular Antenna Using Modal Analysis
Nasser Haghighat - Javad Nourinia - Changiz Ghobadi - Keyhan Hosseini - Farzad Alizadeh - Bahman Mohammadi
طراحی ماتریس باتلر 8×4 در ساختارSIW با کاهش سطح گلبرگ جانبی در باند فرکانسی 60GHz
زهرا مهرزاد - غلامرضا مرادی - ایاز قربانی
Crypto Currency Price Prediction Using Preprocessed Scaled Inputs LSTM Model Enhanced by Improved Gray Wolf Optimization
Amir RabbaniParsa - Mahboobeh Hoshmand - Seyyed Abed Hosseini
طراحی یک اینورتر سه فاز چند سطحی ترکیبی جدید و بررسی کاربرد آن در کنترل موتور القایی
حسین جعفری - داریوش نظرپور - سجاد گلشن نواز - ابراهیم بابائی
Modeling and control of two PPR cooperative manipulations with a passive joint
Hassan Khosravi - Farhad Fani Saberi - Rasul Fesharakifard
Effect of Passivation on the Structural and Electronic Properties of Armchair MoSe2 Nanoribbons: A First-Principles Investigation
ََAmirreza Ghazi - Arash Yazdanpanah
Hand Movment Decoding from EEG Signals Using Kalman Filter with Parameters Estimated via Neural Networks and Least Squares Method
Pegah Khoshkavandi - Mohammad B Shamsollahi - Ali Motie Nasrabadi
Field Effect Phototransistor Based on Thin Film Ag2S Nanocrystals
Hossein Roshan - Mohammad Hossein Sheikhi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3