0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
A COMPREHENSIVE DEEP LEARNING METHOD for SHORT-TERM LOAD FORECASTING
نویسندگان :
Mohammad Sayadlou
1
Mahdi Salay naderi
2
Mehrdad Abedi
3
Sajad Esmaeili
4
Mohammad Amini
5
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
4- دانشگاه صنعتی امیرکبیر
5- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
load forecasting, deep learning, deep forest regression
چکیده :
— Load forecasting is an essential issue in future smart grids where inaccurate forecasting causes energy waste, power shortages, or cross-blackouts. Therefore, increasing forecasting accuracy is crucial due to the expansion of the type of loads and the amount of consumption and parameters that affect the load changes. Machine learning is a powerful tool for achieving artificial intelligence, and it is used for load forecasting as one of its applications. In this paper, short-term load forecasting is performed using an ensemble supervised learning based on random forest method named Deep Forest Regression. This method is also derived from deep learning and deep neural network theory. This forecast has been done using the data of residential consumption of an Iranian city for five months, including from half of May to half of September. The data is gathered every 30 minutes and stored in the system. By comparing the proposed method with some common methods, it can be seen that the proposed method has higher accuracy than those.
لیست مقالات
لیست مقالات بایگانی شده
Establishment of a Virtual Power Plant in Grid for Maximizing Producers' Profits and Minimizing Pollutant Emissions and Investment Costs
Amir Hossein Gholami - Amir Abulfazl Suratgar - Mohammad Bagher Menhaj - Mohammad Reza Hesamzadeh
SchEdge: A Dynamic, Multi-agent, and Scalable Scheduling Simulator for IoT Edge
Ali Hamedi - Amirali Ghaedi - Amin Soltan-beigi - Athena Abdi
Improving ZVS performance in phase shift LLC converter using variable magnetizing inductor for wide input/output voltage range
Saeed Ramezani darvish - Kioumars Shahriyari - Salar Sadeghian - Adib Abrishamifar
Implementation of a 14-Channel Real-time Compact Data Logger for Structure and Mechanical Engineering Laboratories
Keivan Sadeghinezhad - Esmaeil Najafiaghdam - Sara Dezhakam - Ali Sadeghinezhad
A 6-12 GHz Wideband RF PIN Diodes based Limiter with 1-dB Insertion Loss and 30-dB Limitation Rate
Sina Rezaeeahvanouee - Javad Ghalibafan
A New Approach to Solve MDVRP in Lower Computation Time
Reza Rahimi Baghbadorani - Mohammad Amin Zajkani - Mohammad Haeri
Entanglement-Assisted Classical-Quantum Multiple Access Wiretap Channel: One-shot Achievable Rate Region
Hadi Aghaee - Bahareh Akhbari
A Digital Method for Offset Cancellation of Fully Dynamic Latched Comparators
Alireza Ahrar - Mohammad Yavari
Low-Loss, Low-Drive Voltage, and High-Bandwith Thin-Film Lithium Niobate Modulator Using Coaxial Transmission Line
Mohsen Karimian Kakolaki - Ahmad Bakhtafrouz - Parisa Karimi
رمز نگاری داده های EEGبا کلید ترکیبی RSA-AESبرای بالا بردن امنیت و بهینه سازی مدت زمان رمزگذاری و رمز گشایی
حجت قیمت گر - پریسا قربانی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0