0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
A COMPREHENSIVE DEEP LEARNING METHOD for SHORT-TERM LOAD FORECASTING
نویسندگان :
Mohammad Sayadlou
1
Mahdi Salay naderi
2
Mehrdad Abedi
3
Sajad Esmaeili
4
Mohammad Amini
5
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
4- دانشگاه صنعتی امیرکبیر
5- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
load forecasting, deep learning, deep forest regression
چکیده :
— Load forecasting is an essential issue in future smart grids where inaccurate forecasting causes energy waste, power shortages, or cross-blackouts. Therefore, increasing forecasting accuracy is crucial due to the expansion of the type of loads and the amount of consumption and parameters that affect the load changes. Machine learning is a powerful tool for achieving artificial intelligence, and it is used for load forecasting as one of its applications. In this paper, short-term load forecasting is performed using an ensemble supervised learning based on random forest method named Deep Forest Regression. This method is also derived from deep learning and deep neural network theory. This forecast has been done using the data of residential consumption of an Iranian city for five months, including from half of May to half of September. The data is gathered every 30 minutes and stored in the system. By comparing the proposed method with some common methods, it can be seen that the proposed method has higher accuracy than those.
لیست مقالات
لیست مقالات بایگانی شده
Control of optical bistability in one-dimensional photonic crystals with a central layer doped with Landa-type three-level atoms using atomic and laser parameters
Akbar Ashrafabadi - Siamak Khademi - Ghasem Naeimi
A Highly-Linear Wideband Differential Low-Noise Amplifier Using Derivative Superposition Technique
Abolfazl Rajaiyan - Mehdi Saberi
بررسی یک روش معکوس برای استخراج ثابت دی الکتریک محلی با استفاده از میکروسکوپ نوری روبشی میدان نزدیک
علی اقراری - محمد نشاط
A Multilevel Ac-Ac Converter with Input-series and Output-Parallel as Dynamic Voltage Restorer
Seyed mohsen Mortazavi - Reza Beiranvand
Efficient NVIS HF Hinged Half-Loop Vehicular Antenna Using Modal Analysis
Nasser Haghighat - Javad Nourinia - Changiz Ghobadi - Keyhan Hosseini - Farzad Alizadeh - Bahman Mohammadi
بهبود کیفیت تصاویر حاصل از الگوریتم راداری DMAS با تخمین بهینه گذردهی الکتریکی در تصویربرداری مایکروویو برای تشخیص سرطان سینه
فاطمه سادات حسینی راد - امیررضا عطاری - سیدمحمدسعید ماجدی
RCS Calculation of a Symmetrical Microstrip Array Using Discrete Bodies of Revolution Method
Hossein Mohammadzadeh - Abolghasem Zeidaabadi Nezhad - Zaker Hossein Firouzeh
Optimal Operation of Lithium-Ion Batteries Considering Degradation Cost in Vehicle-to-Grid Systems
Mahdi Esfandiari - Amin Rafrafi - Abolfazl Pirayesh
Temperature Prediction of Lithium-Ion Batteries for Thermal Management Systems Using Graph Convolutional Networks
Sepehr Ghalebi - Elaheh Sadat Ahmadi Mousavi - Farzaneh Abdollahi - Farschad Torabi
Texture description and Face Recognition using Weighted Local Patch Distance Vectors
Ziba Javanmardi - Farzam Mohebbi - Seyed Saeed Hayati
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0