0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
A COMPREHENSIVE DEEP LEARNING METHOD for SHORT-TERM LOAD FORECASTING
نویسندگان :
Mohammad Sayadlou
1
Mahdi Salay naderi
2
Mehrdad Abedi
3
Sajad Esmaeili
4
Mohammad Amini
5
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
4- دانشگاه صنعتی امیرکبیر
5- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
load forecasting, deep learning, deep forest regression
چکیده :
— Load forecasting is an essential issue in future smart grids where inaccurate forecasting causes energy waste, power shortages, or cross-blackouts. Therefore, increasing forecasting accuracy is crucial due to the expansion of the type of loads and the amount of consumption and parameters that affect the load changes. Machine learning is a powerful tool for achieving artificial intelligence, and it is used for load forecasting as one of its applications. In this paper, short-term load forecasting is performed using an ensemble supervised learning based on random forest method named Deep Forest Regression. This method is also derived from deep learning and deep neural network theory. This forecast has been done using the data of residential consumption of an Iranian city for five months, including from half of May to half of September. The data is gathered every 30 minutes and stored in the system. By comparing the proposed method with some common methods, it can be seen that the proposed method has higher accuracy than those.
لیست مقالات
لیست مقالات بایگانی شده
Observer-Based Control for impulsive switched systems with Uncertain inputs
Soheil Sheikh ahmadi - Farzad Hashemzadeh - Mohammad Ali Badamchizadeh
Image quality equations for focused transducer in circular photoacoustic computed tomography
Soheil Hakakzadeh - Zahra Kavehvash
ZnO-based Acoustofluidics: Droplet-based Particle Manipulation
Sara Abbasi - Behdad Barahimi - Sara Darbari - Mohammad Kazem Moravvej-Farshi - Mohammad Zabetian
طراحی و شبیه سازی مبدل کاهنده دو مرحله ای با کنترل کننده زمان روشن-خاموش تطبیقی
نوید گودرزی - حسین پاک نیت - نوید یثربی
An Event-Triggered Robust Data-Driven Predictive Control with Transient Response Improvement
Amir Mehrnoosh - Mohammad Haeri
(Room Temperature Chemiresistor H2S Gas Sensor based on ZnS/PbS Core-Shell Quantum Dots(CSQDs
Mojtaba Azimi - Ali Rostami
Design Investigation of a Broadband Polarization Rotator Using SIW Technology with T-Shaped Slots
Amin Azimi - Mohammad.H Neshati
Simulation and Measurement of a Large Reverberation Chamber (LRC) Loaded by Metal Elements
Mojtaba Basravi - ZakerHossein Firouzeh - Hadi Aliakbarian
A New High Voltage Gain Z-Source Based DC-DC Converter for High-Power DG Applications
Sakina Bakhshi - Reza Beiranvand
Kernel-Based Band Selection for Hyperspectral Image Classification
Mehdi Kamandar
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1