0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
A COMPREHENSIVE DEEP LEARNING METHOD for SHORT-TERM LOAD FORECASTING
نویسندگان :
Mohammad Sayadlou
1
Mahdi Salay naderi
2
Mehrdad Abedi
3
Sajad Esmaeili
4
Mohammad Amini
5
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
4- دانشگاه صنعتی امیرکبیر
5- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
load forecasting, deep learning, deep forest regression
چکیده :
— Load forecasting is an essential issue in future smart grids where inaccurate forecasting causes energy waste, power shortages, or cross-blackouts. Therefore, increasing forecasting accuracy is crucial due to the expansion of the type of loads and the amount of consumption and parameters that affect the load changes. Machine learning is a powerful tool for achieving artificial intelligence, and it is used for load forecasting as one of its applications. In this paper, short-term load forecasting is performed using an ensemble supervised learning based on random forest method named Deep Forest Regression. This method is also derived from deep learning and deep neural network theory. This forecast has been done using the data of residential consumption of an Iranian city for five months, including from half of May to half of September. The data is gathered every 30 minutes and stored in the system. By comparing the proposed method with some common methods, it can be seen that the proposed method has higher accuracy than those.
لیست مقالات
لیست مقالات بایگانی شده
بهبود تخمین واریانس نویز با بهره گیری از واریانس تغییرات سیگنال
مجید دهقانیزاده - مسعودرضا آقابزرگی
A Comprehensive Analysis of a Digital Control Strategy for Photovoltaic-Based Single-Phase Grid-Tied Inverter Systems
Soheil Hasani Sangani - Mohamad Reza Moslemnejad - Mojtaba Saeedi - Alireza Jalalitalab - Reza Beiranvand
Breast Cancer Detection by Time-Reversal Imaging Using Ultra-Wideband Modified Circular Patch Antenna Array
Mohammad Haghpanah - Zahra Ghattan Kashani - Atefeh Khalili Param
مدلسازی ترانسفورماتورهای کم تلفات در شرایط عملکرد غیرعادی و بررسی تأثیر آن ها بر تلفات فنی شبکه قدرت
محمدرضا موسوی خادمی - غلامرضا زارع پلکوئی - مرتضی موسوی خادمی
Optimization of Fifth Order Band-Pass Ladder Filter and Statistical Analysis of Reverse Problem
Sayyed Ali Alizadeh - Mahmoud Kamarei
Direct model reference adaptive control for depth of hypnosis in anesthesia
Raha Rahimi - Farzaneh Shayegh - Marzieh Kamali
Fixed-time consensus of unknown nonlinear multi-agent systems
Mohammad Hadi Rezaei - Ali Abooee
Fast and Low Power Modified Carry Look-Ahead Adder
Sanaz Salem - Amir hossein Owji
Applying Parameter-Oriented Learning to Identify Statistical EEG Features Associated with Depression
Sara Bargi Barkouk - Melika Changizi - Mahdi Zolfagharzadeh Kermani - Ali Asadi Zeidabadi
Improving the Accuracy of the Annotation Algorithm in Pattern-Based Tennis Game Video
Azam Bastanfard - Dariush Amirkhani
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2