0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
A COMPREHENSIVE DEEP LEARNING METHOD for SHORT-TERM LOAD FORECASTING
نویسندگان :
Mohammad Sayadlou
1
Mahdi Salay naderi
2
Mehrdad Abedi
3
Sajad Esmaeili
4
Mohammad Amini
5
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
4- دانشگاه صنعتی امیرکبیر
5- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
load forecasting, deep learning, deep forest regression
چکیده :
— Load forecasting is an essential issue in future smart grids where inaccurate forecasting causes energy waste, power shortages, or cross-blackouts. Therefore, increasing forecasting accuracy is crucial due to the expansion of the type of loads and the amount of consumption and parameters that affect the load changes. Machine learning is a powerful tool for achieving artificial intelligence, and it is used for load forecasting as one of its applications. In this paper, short-term load forecasting is performed using an ensemble supervised learning based on random forest method named Deep Forest Regression. This method is also derived from deep learning and deep neural network theory. This forecast has been done using the data of residential consumption of an Iranian city for five months, including from half of May to half of September. The data is gathered every 30 minutes and stored in the system. By comparing the proposed method with some common methods, it can be seen that the proposed method has higher accuracy than those.
لیست مقالات
لیست مقالات بایگانی شده
Low-Loss, Low-Drive Voltage, and High-Bandwith Thin-Film Lithium Niobate Modulator Using Coaxial Transmission Line
Mohsen Karimian Kakolaki - Ahmad Bakhtafrouz - Parisa Karimi
A Novel Ultra Wide-Band Antenna for the Array with Shaped Beam Radiation Pattern
Shima Amirinalloo - Zahra Atlasbaf
Analytical Model for Estimating the Range of Troposcatter Active Radar
Mahdi Shiri - Mohammadreza Edalatzadeh
A New High Voltage Gain Non-isolated DC-DC Converter
Ahmadreza Ghanaatian - Reza Takarli - Abolfazl Vahedi
تشخیص و مکان یابی خطاها در آرایه های فتوولتائیک متصل به شبکه
سعید انصاری - حیدر صامت - تیمور قنبری
Significant Methods to Improve Control of Quadrotors, Hexarotors and Octorotors
Peyman Amiri - Nima Sina - Mohammad Danesh
Three Improved Boost Topologies with Continuous Input/Output Currents Suitable for High-Voltage Applications
Hossein Gholizadeh - Hesam Ehsan - Alireza Poursalan - Mohammad Hamed Samimi
پیشبینی مسیر حرکت انسانها در محیطهای پر ازدحام
امین منافی سلطان احمدی - سمانه حسینی سمنانی
Multi-Bit Memory Architecture for In-memory Computing using In-Plane MTJ
Milad Ashtari Gargari - Nima Eslami - Mohammad Hossein Moaiyeri
Performance Evaluation of a Deep Neural Network Joint Equalizer-Decoder in AWGN-ISI Channels
Zahra Joleini - Ali Jamshidi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3