0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
A COMPREHENSIVE DEEP LEARNING METHOD for SHORT-TERM LOAD FORECASTING
نویسندگان :
Mohammad Sayadlou
1
Mahdi Salay naderi
2
Mehrdad Abedi
3
Sajad Esmaeili
4
Mohammad Amini
5
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
4- دانشگاه صنعتی امیرکبیر
5- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
load forecasting, deep learning, deep forest regression
چکیده :
— Load forecasting is an essential issue in future smart grids where inaccurate forecasting causes energy waste, power shortages, or cross-blackouts. Therefore, increasing forecasting accuracy is crucial due to the expansion of the type of loads and the amount of consumption and parameters that affect the load changes. Machine learning is a powerful tool for achieving artificial intelligence, and it is used for load forecasting as one of its applications. In this paper, short-term load forecasting is performed using an ensemble supervised learning based on random forest method named Deep Forest Regression. This method is also derived from deep learning and deep neural network theory. This forecast has been done using the data of residential consumption of an Iranian city for five months, including from half of May to half of September. The data is gathered every 30 minutes and stored in the system. By comparing the proposed method with some common methods, it can be seen that the proposed method has higher accuracy than those.
لیست مقالات
لیست مقالات بایگانی شده
حسگر زیستی نانومتری حساس با زیرلایه غیرهمگن برای تشخیص سلول های سرطانی
پریسا مرادی هارونی - محمود رفائی بوکت
تجزیه و تحلیل عملکرد سیستم ناوبری اینرسیایی با استفاده از الگوریتم GAME
نرجس احمدیان - بیژن ذاکری گتابی
Stator Windings Resistance Estimation Methods of In-Service Induction Motors-A Review
Moslem Geravandi - Hassan Moradi CheshmehBeigi
Incentive-based Demand Response Economic Model for Peak Shaving Considering Load Serving Entity Profit Maximization
Nasim EslamiNia - Habib RajabiMashhdi
کنترل وضعیت ماهواره با کنترل پیشبین اقتصادی مقاوم مبتنی بر تیوب با محاسبات کاهش یافته
مهیار مدنی اصفهانی - عارف آقاملائی - طالب عبدالهی - سعید شمقدری
Efficiency Enhancement of Heterojunction IBC Solar Cell: Surface Passivation
Amirmohammad Shahryari - Zohreh Golshan bafghi - Negin Manavizadeh
An Integrated Technical Analysis and Machine Learning Trading Model for Noisy and Volatile Financial Markets
Arvin Esfandiari - Ali Doustmohammadi
Improved Low Voltage Ride Through by A STATCOM Based on Neutral Point Piloted (NPP) Multilevel Inverter
Yousef Neyshabouri - Mohammad Farhadi-kangarlu
Ultra-broadband and compact beamsplitters using subwavelength-grating-assisted zero gap directional couplers
Kamalodin Arik - Mahmood Akbari - Amin Khavasi
Hardware Implementation of a Chaos Based Image Encryption Using High-Level Synthesis
Saeed Sharifian.m.m - Vahid Rashtchi - Ali Azarpeyvand
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0