0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
A COMPREHENSIVE DEEP LEARNING METHOD for SHORT-TERM LOAD FORECASTING
نویسندگان :
Mohammad Sayadlou
1
Mahdi Salay naderi
2
Mehrdad Abedi
3
Sajad Esmaeili
4
Mohammad Amini
5
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
4- دانشگاه صنعتی امیرکبیر
5- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
load forecasting, deep learning, deep forest regression
چکیده :
— Load forecasting is an essential issue in future smart grids where inaccurate forecasting causes energy waste, power shortages, or cross-blackouts. Therefore, increasing forecasting accuracy is crucial due to the expansion of the type of loads and the amount of consumption and parameters that affect the load changes. Machine learning is a powerful tool for achieving artificial intelligence, and it is used for load forecasting as one of its applications. In this paper, short-term load forecasting is performed using an ensemble supervised learning based on random forest method named Deep Forest Regression. This method is also derived from deep learning and deep neural network theory. This forecast has been done using the data of residential consumption of an Iranian city for five months, including from half of May to half of September. The data is gathered every 30 minutes and stored in the system. By comparing the proposed method with some common methods, it can be seen that the proposed method has higher accuracy than those.
لیست مقالات
لیست مقالات بایگانی شده
Enhancing Fetal Brain MRI Segmentation with Adaptive Attention Mechanisms and Residual Blocks
Nazanin Valaee - Vajiheh Sabeti
تشخیص حالت عادی و غیرعادی شبکه برق هوشمند با استفاده از شبکه عصبی مصنوعی
محمد گنج خانی - علی عباسپورطهرانی فرد - سجاد فتاحیان دهکردی - محمد غلامی
Improved Generative Adversarial Network with Differentiable KS Distance
Siavash Sadeghi Ivrigh - Mohammadreza Hassannejad Bibalan - Asghar Keshtkar
Investigation of Li3P as Electrolyte and Lithium-ion conductor: An Ab-Initio Study
Keyvan Khosh Abady - ََamin Niksirat - Negar Karpourazar - Mahdi Pourfath
Simulation of Two Metal- Semiconductor- Metal Photodetectors for Sensing Power and Angle of Incident Light
Shakila Karami - Maryam Khodadai - Nosrat Granpayeh
Efficient Full Adders for Approximate Arithmetic Units in the Image Processing Applications
Bahram Rashidi
Design and Modeling of Graphene Based Electro-absorption Modulator Integrated with Hybrid Plasmonic Waveguides
Hadi Soofi - Shima Karkon Bagheri - Hamid Vahed
Design and Implementation of a Modular ROS-based Mobile Robot With Hierarchical Control
Erfan Riazati - Arian Hajizadeh - Seyed Majid Esmailzadeh
Design Of Observer-Based Nonlinear Controller For Tracking Maximum Power Point In The Solar Cell
Kobra Siahi - Mohammad Reza Arvan - Vahid Behnamgol - Mahdi Mosayebi
Inversion Coefficient as a Key Design Parameter in MOS Device Performance
Gholamreza Khademevatan - Ali Jalali
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2