0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
A COMPREHENSIVE DEEP LEARNING METHOD for SHORT-TERM LOAD FORECASTING
نویسندگان :
Mohammad Sayadlou
1
Mahdi Salay naderi
2
Mehrdad Abedi
3
Sajad Esmaeili
4
Mohammad Amini
5
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
4- دانشگاه صنعتی امیرکبیر
5- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
load forecasting, deep learning, deep forest regression
چکیده :
— Load forecasting is an essential issue in future smart grids where inaccurate forecasting causes energy waste, power shortages, or cross-blackouts. Therefore, increasing forecasting accuracy is crucial due to the expansion of the type of loads and the amount of consumption and parameters that affect the load changes. Machine learning is a powerful tool for achieving artificial intelligence, and it is used for load forecasting as one of its applications. In this paper, short-term load forecasting is performed using an ensemble supervised learning based on random forest method named Deep Forest Regression. This method is also derived from deep learning and deep neural network theory. This forecast has been done using the data of residential consumption of an Iranian city for five months, including from half of May to half of September. The data is gathered every 30 minutes and stored in the system. By comparing the proposed method with some common methods, it can be seen that the proposed method has higher accuracy than those.
لیست مقالات
لیست مقالات بایگانی شده
Kernel-Based Embedded Feature Selection for Motor Imagery Based BCI
Mehdi Kamandar
Zero control effort approach to perturbed coupled orbit-attitude periodic solution at three-body problem: Earth-Mars system
Amirreza Kosari - Ehsan Abbasali - Majid Bakhtiari
Designing Music Recommendation System based on music Genre by using Bi-LSTM
Saman Mesghali - Javad Askari
Entanglement-Assisted Classical-Quantum Multiple Access Wiretap Channel: One-shot Achievable Rate Region
Hadi Aghaee - Bahareh Akhbari
Non-pharmacological interventions for Covid-19 new variants with fractional order fuzzy type-2 PID
Hadi Delavari - Amir Veisi - Maryam Ranjbaran
Multi-Objective Particle Swarm Optimization Of Spiral Antenna for Microwave Imaging Applications
Mehdi Yousefnia - Jaber Allahgholipor - Ataollah Ebrahimzadeh
بررسی عملکرد تقویت کننده فیبری پالسی نانوثانیه اربیوم ایتربیوم با نرخ تکرار پایین
احسان حمیدنژاد - اصغر غلامی - محمدجواد حکمت
Partial Image Encryption of Faces Based on Chaotic Maps and Elliptic Curve Cryptography
Ali Soleymani - Md Jan Nordin
System Sectioning to Retain Durability of an Inverter-Based Microgrid
Sara Noorollah
بررسی تاثیر دینامیکی سیستمهای انرژی خورشیدی متصل به شبکه بر بارگذاری ترانسفورماتور و بهبود عملکرد شبکه فشار ضعیف توزیع نیروی برق
مهدی محمدی - رضا خدادی - علی معصومی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2