0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Enhancing Precision in Dermoscopic Imaging using TransUNet and CASCADE
نویسندگان :
Mahdi Niknejad
1
Mahdi Firouzbakht
2
Maryam Amirmazlaghani
3
1- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
2- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
3- دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران)
کلمات کلیدی :
Deep Learning،Dermoscopic Imaging،Medical Image Segmentation،UNet،Vision Transformer
چکیده :
Medical imaging is advancing at a rapid pace, revolutionizing medicine. Skin lesion segmentation is essential when employing computer-aided approaches for early skin cancer diagnosis. However, automatically segmenting skin lesions in dermoscopic images is a difficult task because of several challenges. Despite recent good performance, CNN-based algorithms are unable to effectively learn explicit global and long-range semantic information because of the fundamental locality of convolution operations. The first medical image segmentation framework, TransUNet, was presented employing Vision Transformer as a strong encoder in a U-shaped architecture, in light of the growing interest in self-attention mechanisms in computer vision and their potential to address this issue. Using hierarchical vision transformers' multi-scale features, CASCADE is a novel attention-based decoder. The components of CASCADE are a convolutional attention module that improves the local and long-range context by suppressing background information and an attention gate that combines features. Using TransUNet's Encoder and CASCADE as the Decoder, the TransCASCADE model efficiently makes use of the global context stored by Transformers and detailed, high-resolution spatial information from CNN features. Experimental results demonstrate the high efficiency of the proposed method on PH2 dataset.
لیست مقالات
لیست مقالات بایگانی شده
Chaos-Based Physical Layer Security in NOMA Systems
Alireza Mard shoorijeh - Mahmoud Ahmadian Attari
Ultra-broadband and compact beamsplitters using subwavelength-grating-assisted zero gap directional couplers
Kamalodin Arik - Mahmood Akbari - Amin Khavasi
A Highly-Linear Wideband Differential Low-Noise Amplifier Using Derivative Superposition Technique
Abolfazl Rajaiyan - Mehdi Saberi
Area-Efficient Partially-Pipelined Architecture for Fast-SSC Decoding of Polar Codes
Mehdi Saeidi - Matin Hashemi
Joint Space Control of a Deployable Cable Driven Parallel Robot with Redundant Actuators
S. Ahmad Khalilpour - Ali Hassani - Rohollah Khorambakht - A.R. Zahedi - Abbas Bataleblu - Hamid D. Taghirad
Flexibility Assessment of Virtual Power Plant with Considering Dispatchable Wind Turbine
Mahdi Rahimi - Fatemeh Jahanbani Ardakani - Ali Reza Rahimi
Design and Simulation of Long Slot SIW Leaky Wave Antenna for Automotive Radar Application
Jamal Kazazi - Alireza Rahmani - Mahmoud Kamarei
Experimental Study on Automatically Assembling Custom Catering Packages With a 3-DOF Delta Robot Using Deep Learning Methods
Reihaneh Yourdkhani - Arash Tavoosian - Navid Asadi Khomami - Mehdi Tale Masouleh
Non-homogeneous interference suppression in OFDM array radars using direct data domain approach
Sima Shariatmadari
Analyzing Large-scale PV Plant Controllers by Technical Performance Indices using MCS Method
Hooman Nasrazadani - Alireza Sedighi - Hossein Seifi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3