0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A Novel Approach to Pulmonary Embolism Segmentation: Increasing an Attention-based U-Net
نویسندگان :
Hanie Arabian
1
Alireza Karimian
2
Hosein Arabi
3
Marjan Mansourian
4
1- دانشگاه اصفهان
2- دانشگاه اصفهان
3- University of Geneva
4- دانشگاه علوم پزشکی اصفهان
کلمات کلیدی :
deep learning،image segmentation،pulmonary embolism،squeeze-and-attention block،u-net architecture
چکیده :
Pulmonary embolism (PE) is a life-threatening condition, often leading to late diagnoses. Diagnostic tools like Computed Tomography Pulmonary Angiography (CTPA) rely on radiologist skills, resulting in variable sensitivity and specificity. This study aims to leverage deep learning, specifically a convolutional neural network with U-net architecture enhanced by Squeeze-and-Attention and Long Short-Term Memory (LSTM) blocks, to improve the segmentation of emboli in CTPA images. Utilizing two datasets, CAD-PE (91 cases, 89 with PE) and FUMPE (35 cases, 33 with PE), the research assesses how increasing the number of network layers (57, 67, and 103) affects segmentation performance. The results demonstrated that the slice-wise sensitivity improved from 76.73±21.94 with a 57-layer architecture to 80.36±21.42 with a 67-layer architecture, indicating better pulmonary embolism detection (with a significant difference due to paired T-test P-value of less than 0.05). In addition, the patient-wise AUC slightly increases from 81.68±10.94 (57 layers) to 85.09±10.69 (67 layers) with a Kruskal-Wallis P-value of 0.0189, which indicates a significant difference between the networks’ performance. However, no significant improvement was observed with the 103-layer model, highlighting the potential for overfitting. Results from this study demonstrate the potential of deep learning algorithms in enhancing the accurate diagnosis of pulmonary embolism. Finally, the neural network's performance in segmenting pulmonary embolisms from CT images demonstrates promising directions with particular specificity and overall AUC strengths.
لیست مقالات
لیست مقالات بایگانی شده
A Bi-Level Attack-Defense Model for the Forecasting False Data Injection Attacks on the Integrated Energy Systems
Maryam Azimi - Hamed Delkhosh - Mahdi Ghaedi
A Framework for Plant Topology Extraction Using Process Mining and Alarm Data
Amir Neshastegaran - Ali Norouzifar - ایمان ایزدی
بهبودی بر مساله تشخیص اشیا برجسته درتصاویر مبتنی بر یادگیری عمیق
مهران طاهری - محمد صادق هل فروش - کامران کاظمی
Heterogeneous Coverage Path Planning For Multi- Agent systems with ACO and GA
Mohammad Hasan Jalili Bahabadi - ََAmir Mahdavi - Saeed Khankalantary
A Siamese Neural Network for Predicting snoRNA-Disease Association
Milad Besharatifard - Fatemeh Zare-Mirakabad
Application of Artificial Neural Network on Diagnosing Location and Extent of Disk Space Variations in Transformer Windings Using Frequency Response Analysis
Reza Behkam - Hossein Karami - Mahdi Salay Naderi - Gevork Gharehpetian
Investigation the Effects of Partial discharge Pulse Characteristics on its Propagation in Stator Windings
Arash Abyaz - Mohammad Hamed Samimi - Amir Abbas Shayegani Akmal
Improving ZVS performance in phase shift LLC converter using variable magnetizing inductor for wide input/output voltage range
Saeed Ramezani darvish - Kioumars Shahriyari - Salar Sadeghian - Adib Abrishamifar
The change in Individual Alpha Frequency during Neurofeedback training
Maryam Dorvashi - Neda Behzadfar
Batch(offline) Reinforcement Learning for recommender system
Mohammad Amir Rezaei Gazik - Mehdy Roayaei
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1