0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A Novel Approach to Pulmonary Embolism Segmentation: Increasing an Attention-based U-Net
نویسندگان :
Hanie Arabian
1
Alireza Karimian
2
Hosein Arabi
3
Marjan Mansourian
4
1- دانشگاه اصفهان
2- دانشگاه اصفهان
3- University of Geneva
4- دانشگاه علوم پزشکی اصفهان
کلمات کلیدی :
deep learning،image segmentation،pulmonary embolism،squeeze-and-attention block،u-net architecture
چکیده :
Pulmonary embolism (PE) is a life-threatening condition, often leading to late diagnoses. Diagnostic tools like Computed Tomography Pulmonary Angiography (CTPA) rely on radiologist skills, resulting in variable sensitivity and specificity. This study aims to leverage deep learning, specifically a convolutional neural network with U-net architecture enhanced by Squeeze-and-Attention and Long Short-Term Memory (LSTM) blocks, to improve the segmentation of emboli in CTPA images. Utilizing two datasets, CAD-PE (91 cases, 89 with PE) and FUMPE (35 cases, 33 with PE), the research assesses how increasing the number of network layers (57, 67, and 103) affects segmentation performance. The results demonstrated that the slice-wise sensitivity improved from 76.73±21.94 with a 57-layer architecture to 80.36±21.42 with a 67-layer architecture, indicating better pulmonary embolism detection (with a significant difference due to paired T-test P-value of less than 0.05). In addition, the patient-wise AUC slightly increases from 81.68±10.94 (57 layers) to 85.09±10.69 (67 layers) with a Kruskal-Wallis P-value of 0.0189, which indicates a significant difference between the networks’ performance. However, no significant improvement was observed with the 103-layer model, highlighting the potential for overfitting. Results from this study demonstrate the potential of deep learning algorithms in enhancing the accurate diagnosis of pulmonary embolism. Finally, the neural network's performance in segmenting pulmonary embolisms from CT images demonstrates promising directions with particular specificity and overall AUC strengths.
لیست مقالات
لیست مقالات بایگانی شده
Robust Model Predictive Control of Cyber-Physical Linear Parameter Varying System subject to deception attacks and bounded disturbances
Sepideh Jahani VakilKandi - Farhad Bayat - Abolfazl Jalilvand
Exploring Different Machine Learning-based Methods for Learning the Language of Shepna Stock Price
Zoreh Ansari - Jalal Raeisi Gahruei - Mansoor Khademi
Vehicle stability control and trajectory tracking utilizing a type-2 fuzzy controller
Mohammad Mahdavi Mazdeh - Mehdi Pourgholi - Vahid Fakhari
Optimal Operation of Lithium-Ion Batteries Considering Degradation Cost in Vehicle-to-Grid Systems
Mahdi Esfandiari - Amin Rafrafi - Abolfazl Pirayesh
تشخیص انتها به انتها حملات جعل بازپخش صدا به کمک شبکه CNN-ViT جهت بهبود تعمیم پذیری
حسین حجازی - محمد عسگری
Sliding Mode Control for a Platoon of vehicular with DoS attacks and Obstacles
Tara Rajabi Nezhad Siahpoosh - Hanie Marufkhani - Mohammad A. Khosravi
Temporary Goal Method: A Solution for the Problem of Getting Stuck in Motion Planning Algorithms
Danial Khan mohamad zade - Samaneh Hosseini Semnani
A Novel Ultra Wide-Band Antenna for the Array with Shaped Beam Radiation Pattern
Shima Amirinalloo - Zahra Atlasbaf
Age of Information Optimization for Multi-hop VLC/RF IoT Sensor Networks
Hossein Khodi - Paeiz Azmi - Nader Mokari - Mohammadreza Javan - Hamid Saeedi - Murat Uysal
MoS2 Grating on a Grounded Periodic SiO2 as a Wideband THz Absorber
Mohammad Amin Zolghadr - Mahmood Rafaei Booket
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3