0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A Novel Approach to Pulmonary Embolism Segmentation: Increasing an Attention-based U-Net
نویسندگان :
Hanie Arabian
1
Alireza Karimian
2
Hosein Arabi
3
Marjan Mansourian
4
1- دانشگاه اصفهان
2- دانشگاه اصفهان
3- University of Geneva
4- دانشگاه علوم پزشکی اصفهان
کلمات کلیدی :
deep learning،image segmentation،pulmonary embolism،squeeze-and-attention block،u-net architecture
چکیده :
Pulmonary embolism (PE) is a life-threatening condition, often leading to late diagnoses. Diagnostic tools like Computed Tomography Pulmonary Angiography (CTPA) rely on radiologist skills, resulting in variable sensitivity and specificity. This study aims to leverage deep learning, specifically a convolutional neural network with U-net architecture enhanced by Squeeze-and-Attention and Long Short-Term Memory (LSTM) blocks, to improve the segmentation of emboli in CTPA images. Utilizing two datasets, CAD-PE (91 cases, 89 with PE) and FUMPE (35 cases, 33 with PE), the research assesses how increasing the number of network layers (57, 67, and 103) affects segmentation performance. The results demonstrated that the slice-wise sensitivity improved from 76.73±21.94 with a 57-layer architecture to 80.36±21.42 with a 67-layer architecture, indicating better pulmonary embolism detection (with a significant difference due to paired T-test P-value of less than 0.05). In addition, the patient-wise AUC slightly increases from 81.68±10.94 (57 layers) to 85.09±10.69 (67 layers) with a Kruskal-Wallis P-value of 0.0189, which indicates a significant difference between the networks’ performance. However, no significant improvement was observed with the 103-layer model, highlighting the potential for overfitting. Results from this study demonstrate the potential of deep learning algorithms in enhancing the accurate diagnosis of pulmonary embolism. Finally, the neural network's performance in segmenting pulmonary embolisms from CT images demonstrates promising directions with particular specificity and overall AUC strengths.
لیست مقالات
لیست مقالات بایگانی شده
High Performance and Low Power Spintronic Binarized Neural Network Hardware Accelerator
Milad Tanavardi Nasab - Arefe Amirany - Mohammad Hossein Moaiyeri - Kian Jafari
Sparsity Domain Smoothing Based Thresholding Recovery Method for OFDM Sparse Channel Estimation
Mohammad Hossein Bahonar - Reza Ghaderi Zefreh - Rouhollah Amiri
Outage and Sum-Rate Analysis for mCAP-NOMA in Visible Light Communication Under Users' Mobility
Amir Oshtoudan - Seyed Mohammad Sajad Sadough
A K-Band Ultra-Low-Power High-Linearity Down-Conversion Mixer in CMOS Technology
Kayvan Qolami - جواد یاوندحسنی
Analysis of an E-core Permanent Magnet Switched Reluctance Motor
Ali Ghaffarpour - Mojtaba Mirsalim
Development of Iterative Learning Control Method for Trajectory Tracking in Two-Dimensional Discrete-Time Systems
Meysam Azhdari - Tahereh Binazadeh - Soheila Abedi
شناسایی گرههای مهم سیستم قدرت با استفاده از ابزار شبکههای پیچیده و مرکزیتهای مبتنی بر تشخیص جامعه
سپهر مردانی - علی کریمی - مهران معماری
Model Predictive Control for Interconnected Systems with Communication Delays
Reza Mohammadikia - Mahsan Tavakoli-Kakhki
Intelligent Near-Infrared Spectroscopy for Blood Glucose Level Classification
Shahrooz Sharifi - Amirhossein Maddah-Torghabehi - Mohammad-Reza Akbarzadeh-Totonchi
Artificial Intelligence-Based Prediction of Flexibility Requirements in Power Systems
MohammadReza Zarei-Jeliani - Mahmud Fotuhi-Firuzabad - Niloofar Pourghaderi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0