0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A Novel Approach to Pulmonary Embolism Segmentation: Increasing an Attention-based U-Net
نویسندگان :
Hanie Arabian
1
Alireza Karimian
2
Hosein Arabi
3
Marjan Mansourian
4
1- دانشگاه اصفهان
2- دانشگاه اصفهان
3- University of Geneva
4- دانشگاه علوم پزشکی اصفهان
کلمات کلیدی :
deep learning،image segmentation،pulmonary embolism،squeeze-and-attention block،u-net architecture
چکیده :
Pulmonary embolism (PE) is a life-threatening condition, often leading to late diagnoses. Diagnostic tools like Computed Tomography Pulmonary Angiography (CTPA) rely on radiologist skills, resulting in variable sensitivity and specificity. This study aims to leverage deep learning, specifically a convolutional neural network with U-net architecture enhanced by Squeeze-and-Attention and Long Short-Term Memory (LSTM) blocks, to improve the segmentation of emboli in CTPA images. Utilizing two datasets, CAD-PE (91 cases, 89 with PE) and FUMPE (35 cases, 33 with PE), the research assesses how increasing the number of network layers (57, 67, and 103) affects segmentation performance. The results demonstrated that the slice-wise sensitivity improved from 76.73±21.94 with a 57-layer architecture to 80.36±21.42 with a 67-layer architecture, indicating better pulmonary embolism detection (with a significant difference due to paired T-test P-value of less than 0.05). In addition, the patient-wise AUC slightly increases from 81.68±10.94 (57 layers) to 85.09±10.69 (67 layers) with a Kruskal-Wallis P-value of 0.0189, which indicates a significant difference between the networks’ performance. However, no significant improvement was observed with the 103-layer model, highlighting the potential for overfitting. Results from this study demonstrate the potential of deep learning algorithms in enhancing the accurate diagnosis of pulmonary embolism. Finally, the neural network's performance in segmenting pulmonary embolisms from CT images demonstrates promising directions with particular specificity and overall AUC strengths.
لیست مقالات
لیست مقالات بایگانی شده
A 6-12 GHz Wideband RF PIN Diodes based Limiter with 1-dB Insertion Loss and 30-dB Limitation Rate
Sina Rezaeeahvanouee - Javad Ghalibafan
Medical Ultrasound Image Restoration in Presence of Defective Transducer Elements
Mohammad Saeed Zare Dehabadi - Mehran Jahed
A Design Methodology for Submicron Low-Voltage Bandgap Voltage Reference
Mehdi Samavati - Samad Sheikhaei - Mohsen Jalali
Design and Simulation of Modified Salisbury Spatial Filter using Genetic Algorithm for Improving Optical Image Processing
Mohammadmahdi Modabberanbeh - Hassan Kaatuzian - Amir Nader Askarpour
Artificial Intelligence-Based Prediction of Flexibility Requirements in Power Systems
MohammadReza Zarei-Jeliani - Mahmud Fotuhi-Firuzabad - Niloofar Pourghaderi
Precise model extraction for Li-Ion batteries using segmented Columb counting and Kalman filtering
Ali Fotokkiani - Ali Ghanbarian - Amirhossein Esteghamat - Ali Fotowat-Ahmady - Farzad Tahami
پیش بینی قیمت انرژی الکتریکی در بازار روز بعد با استفاده از شبکه عصبی مصنوعی تعمیم یافته و با در نظر گرفتن محدودیت سوخت رسانی
حسین صابر - سعید محسنی - رضا پورآقابابا - مصطفی یحیی آبادی
Efficiency Estimation Methods of In-Service Induction Motors-A Review
Moslem Geravandi - Hassan Moradi CheshmehBeigi
Fabrication and performance analysis of a ZnO phototransistor for UV detection
Ghasem Yousefi Simakani - ُSamaneh Hamedi
Multi-Agent Deployment Around a Source in the Plane Using Biased Extremum Seeking
Mohammadali Ghadiri-modarres - Mohsen Mojiri - Ehsan Fattahi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2