0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A Novel Approach to Pulmonary Embolism Segmentation: Increasing an Attention-based U-Net
نویسندگان :
Hanie Arabian
1
Alireza Karimian
2
Hosein Arabi
3
Marjan Mansourian
4
1- دانشگاه اصفهان
2- دانشگاه اصفهان
3- University of Geneva
4- دانشگاه علوم پزشکی اصفهان
کلمات کلیدی :
deep learning،image segmentation،pulmonary embolism،squeeze-and-attention block،u-net architecture
چکیده :
Pulmonary embolism (PE) is a life-threatening condition, often leading to late diagnoses. Diagnostic tools like Computed Tomography Pulmonary Angiography (CTPA) rely on radiologist skills, resulting in variable sensitivity and specificity. This study aims to leverage deep learning, specifically a convolutional neural network with U-net architecture enhanced by Squeeze-and-Attention and Long Short-Term Memory (LSTM) blocks, to improve the segmentation of emboli in CTPA images. Utilizing two datasets, CAD-PE (91 cases, 89 with PE) and FUMPE (35 cases, 33 with PE), the research assesses how increasing the number of network layers (57, 67, and 103) affects segmentation performance. The results demonstrated that the slice-wise sensitivity improved from 76.73±21.94 with a 57-layer architecture to 80.36±21.42 with a 67-layer architecture, indicating better pulmonary embolism detection (with a significant difference due to paired T-test P-value of less than 0.05). In addition, the patient-wise AUC slightly increases from 81.68±10.94 (57 layers) to 85.09±10.69 (67 layers) with a Kruskal-Wallis P-value of 0.0189, which indicates a significant difference between the networks’ performance. However, no significant improvement was observed with the 103-layer model, highlighting the potential for overfitting. Results from this study demonstrate the potential of deep learning algorithms in enhancing the accurate diagnosis of pulmonary embolism. Finally, the neural network's performance in segmenting pulmonary embolisms from CT images demonstrates promising directions with particular specificity and overall AUC strengths.
لیست مقالات
لیست مقالات بایگانی شده
A brief review of methods for improving the performance of virtual synchronous generators under unbalnced conditions
Mohammad Hossein Mousavi - Hassan Moradi CheshmehBeigi
A Transformerless Single-Switch DC-DC Boost Converter Suitable for Renewable Energy Applications
Saed Mahmoud Alilou - Sasan Ahmadi - Mohammad Maalandish - Seyed Hossein Hosseini
A Multilevel Ac-Ac Converter with Input-series and Output-Parallel as Dynamic Voltage Restorer
Seyed mohsen Mortazavi - Reza Beiranvand
Improving ZVS performance in phase shift LLC converter using variable magnetizing inductor for wide input/output voltage range
Saeed Ramezani darvish - Kioumars Shahriyari - Salar Sadeghian - Adib Abrishamifar
Numerical study of different pillar shapes using deterministic lateral displacement method for particle separation
Mohammad Mahdi Eskandari Sani - Mahdi Aliverdinia - Mahdi Moghimi Zand
Two-Stage Stochastic Modeling for Energymnagement and Control of Virtual Power Plants: Addressing Renewable Energy Challenges
Mohammadreza Mousavi Khademi - Mehdi Zareian Jahromi
برنامه ریزی احتمالاتی بهینه فیلترهای پسیو در حضور خودروهای برقی متصل به شبکه با قابلیت جبرانسازی هارمونیک در شبکههای توزیع
پریسا انجم شعاع - سعید اسماعیلی
Attractors Manipulation in Denoising Autoencoders for Robust Phone Recognition
Shaghayegh Reza - Seyyed Ali Seyyedsalehi - Seyyedeh Zohreh Seyyedsalehi
Design of a Three-Stage OTA with Wide Capacitive Load Range Using Dual-Path and Q-Factor Compensation
Mohammadreza Abedi Orang
Comparison of Channel Selection Methods for EEG Signal Classification
Soraya Charkas - MohammadBagher Shamsollahi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4