0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A Novel Approach to Pulmonary Embolism Segmentation: Increasing an Attention-based U-Net
نویسندگان :
Hanie Arabian
1
Alireza Karimian
2
Hosein Arabi
3
Marjan Mansourian
4
1- دانشگاه اصفهان
2- دانشگاه اصفهان
3- University of Geneva
4- دانشگاه علوم پزشکی اصفهان
کلمات کلیدی :
deep learning،image segmentation،pulmonary embolism،squeeze-and-attention block،u-net architecture
چکیده :
Pulmonary embolism (PE) is a life-threatening condition, often leading to late diagnoses. Diagnostic tools like Computed Tomography Pulmonary Angiography (CTPA) rely on radiologist skills, resulting in variable sensitivity and specificity. This study aims to leverage deep learning, specifically a convolutional neural network with U-net architecture enhanced by Squeeze-and-Attention and Long Short-Term Memory (LSTM) blocks, to improve the segmentation of emboli in CTPA images. Utilizing two datasets, CAD-PE (91 cases, 89 with PE) and FUMPE (35 cases, 33 with PE), the research assesses how increasing the number of network layers (57, 67, and 103) affects segmentation performance. The results demonstrated that the slice-wise sensitivity improved from 76.73±21.94 with a 57-layer architecture to 80.36±21.42 with a 67-layer architecture, indicating better pulmonary embolism detection (with a significant difference due to paired T-test P-value of less than 0.05). In addition, the patient-wise AUC slightly increases from 81.68±10.94 (57 layers) to 85.09±10.69 (67 layers) with a Kruskal-Wallis P-value of 0.0189, which indicates a significant difference between the networks’ performance. However, no significant improvement was observed with the 103-layer model, highlighting the potential for overfitting. Results from this study demonstrate the potential of deep learning algorithms in enhancing the accurate diagnosis of pulmonary embolism. Finally, the neural network's performance in segmenting pulmonary embolisms from CT images demonstrates promising directions with particular specificity and overall AUC strengths.
لیست مقالات
لیست مقالات بایگانی شده
Robust Consensus for Descriptor Multi-agent Systems with Uncertainties in all Matrices
Abolfazl Saadati Moghadam - Ehsan Ranjbar - Amir Abolfazl Suratgar - Hajar Atrianfar
Autonomous, Bio-inspired vision-based navigation system for indoor flying using hybrid optical flow and stereopsis methods
Masoud Mohtadifar - Hadi Seyedarabi
Improving Wind Turbines Blades Damage detection by using YOLO BoF and BoS
Reza Mohammadi - Saeed Sharifian
Numerical investigation of gain switching in Fano semiconductor lasers
Arash Hodaie - Hassan Kaatuzian - Aref Rasoulzadeh Zali
GAN-Driven Image Generation for Metamaterial Absorbers Using Mean and Variance Encoding
Atefe Shahsavaripour - Mohammad Hossein Badiei - Leila Yousefi - Ahmad Kalhor
A Vibration Measurement Device for Condition Monitoring of Medium-Voltage Circuit Breakers
Aref Nikraftar Khameneh - Mohammad Hamed Samimi
Improving the Performance of Unified Power Quality Conditioner Using Interval Type 2 Fuzzy Control
Farzad Rastegar - Zohreh Paydar
Designing of Multilayer Planar Spiral Air-Core Inductor for Power Electronic Applications
Mohammad Khakroei - Mohsen Mostafaei - Mansour Arefian - Afshin Rezaei-Zare - Majid Najafi Zarmehri
On spatiotemporal-aware deep neural networks for real-time video fire detection: empowering image-based models with temporal and spatial features of video
Mahdi Shamisavi - Sahar Eslami - Amir Jahanshahi - Morteza Rajabzadeh
بهبود نمونه برداری از سیگنال روی گراف مبتنی بر نظریه دوایر گرشگورین
مهدیه صادقیان - حمید سعیدی سورک
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0