0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A Novel Approach to Pulmonary Embolism Segmentation: Increasing an Attention-based U-Net
نویسندگان :
Hanie Arabian
1
Alireza Karimian
2
Hosein Arabi
3
Marjan Mansourian
4
1- دانشگاه اصفهان
2- دانشگاه اصفهان
3- University of Geneva
4- دانشگاه علوم پزشکی اصفهان
کلمات کلیدی :
deep learning،image segmentation،pulmonary embolism،squeeze-and-attention block،u-net architecture
چکیده :
Pulmonary embolism (PE) is a life-threatening condition, often leading to late diagnoses. Diagnostic tools like Computed Tomography Pulmonary Angiography (CTPA) rely on radiologist skills, resulting in variable sensitivity and specificity. This study aims to leverage deep learning, specifically a convolutional neural network with U-net architecture enhanced by Squeeze-and-Attention and Long Short-Term Memory (LSTM) blocks, to improve the segmentation of emboli in CTPA images. Utilizing two datasets, CAD-PE (91 cases, 89 with PE) and FUMPE (35 cases, 33 with PE), the research assesses how increasing the number of network layers (57, 67, and 103) affects segmentation performance. The results demonstrated that the slice-wise sensitivity improved from 76.73±21.94 with a 57-layer architecture to 80.36±21.42 with a 67-layer architecture, indicating better pulmonary embolism detection (with a significant difference due to paired T-test P-value of less than 0.05). In addition, the patient-wise AUC slightly increases from 81.68±10.94 (57 layers) to 85.09±10.69 (67 layers) with a Kruskal-Wallis P-value of 0.0189, which indicates a significant difference between the networks’ performance. However, no significant improvement was observed with the 103-layer model, highlighting the potential for overfitting. Results from this study demonstrate the potential of deep learning algorithms in enhancing the accurate diagnosis of pulmonary embolism. Finally, the neural network's performance in segmenting pulmonary embolisms from CT images demonstrates promising directions with particular specificity and overall AUC strengths.
لیست مقالات
لیست مقالات بایگانی شده
Effective Service Restoration in Electrical Distribution Networks Using a Bi-Stage Algorithm
Qasem Asadi - Amir Amini - Hamid Falaghi - Maryam Ramezani
Selecting the Economical Energy Storage System for Photovoltaic Power Plants
Zahra Moradi-Shahrbabak
Improved Spectral Efficiency of RIS-aided 6G Communication using Deep Learning
Zahra Zahedi - Mehrdad Ardebilipur - Fatemeh Dehrouye
Reinforcement Learning based Joint Resource Allocation and User Fairness Optimization in mmWave-NOMA HetNets
Sima Sobhi-Givi - Mahdi Nouri - Mahrokh G. Shayesteh - Hashem Kalbkhani - Zhiguo Ding
Flexible Microgrid Scheduling with the Presence of Renewable Energy Resources
Mahdi Rahimi - Fatemeh Jahanbani Ardakani - Ali Reza Rahimi
Sampled-data-based Descriptor Observer Design with Aperiodic Measurements for Lithium-ion Batteries in Hybrid Electric Vehicles
Hamid Reza Ahmadzadeh - Masoud Shafiee
An Enhanced Chaotic System Based Color Image Encryption using DNA Encoding
Mobin Vaziri - Mohammad Mehdi Rahimifar - Hadi Jahanirad
Addressing Death from Heart Failure Using RACER Algorithm
Mohammad Mirsafaei - Alireza Basiri
مدلسازی ابرشبکههای AlxGa1-xAs)m/(GaAs)n) با استفاده از روش Empirical Tight-Binding
متینه سادات حسینی قیداری - وحیدرضا یزدان پناه
Incentive-based Demand Response Economic Model for Peak Shaving Considering Load Serving Entity Profit Maximization
Nasim EslamiNia - Habib RajabiMashhdi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4