0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A Novel Approach to Pulmonary Embolism Segmentation: Increasing an Attention-based U-Net
نویسندگان :
Hanie Arabian
1
Alireza Karimian
2
Hosein Arabi
3
Marjan Mansourian
4
1- دانشگاه اصفهان
2- دانشگاه اصفهان
3- University of Geneva
4- دانشگاه علوم پزشکی اصفهان
کلمات کلیدی :
deep learning،image segmentation،pulmonary embolism،squeeze-and-attention block،u-net architecture
چکیده :
Pulmonary embolism (PE) is a life-threatening condition, often leading to late diagnoses. Diagnostic tools like Computed Tomography Pulmonary Angiography (CTPA) rely on radiologist skills, resulting in variable sensitivity and specificity. This study aims to leverage deep learning, specifically a convolutional neural network with U-net architecture enhanced by Squeeze-and-Attention and Long Short-Term Memory (LSTM) blocks, to improve the segmentation of emboli in CTPA images. Utilizing two datasets, CAD-PE (91 cases, 89 with PE) and FUMPE (35 cases, 33 with PE), the research assesses how increasing the number of network layers (57, 67, and 103) affects segmentation performance. The results demonstrated that the slice-wise sensitivity improved from 76.73±21.94 with a 57-layer architecture to 80.36±21.42 with a 67-layer architecture, indicating better pulmonary embolism detection (with a significant difference due to paired T-test P-value of less than 0.05). In addition, the patient-wise AUC slightly increases from 81.68±10.94 (57 layers) to 85.09±10.69 (67 layers) with a Kruskal-Wallis P-value of 0.0189, which indicates a significant difference between the networks’ performance. However, no significant improvement was observed with the 103-layer model, highlighting the potential for overfitting. Results from this study demonstrate the potential of deep learning algorithms in enhancing the accurate diagnosis of pulmonary embolism. Finally, the neural network's performance in segmenting pulmonary embolisms from CT images demonstrates promising directions with particular specificity and overall AUC strengths.
لیست مقالات
لیست مقالات بایگانی شده
Improved Generative Adversarial Network with Differentiable KS Distance
Siavash Sadeghi Ivrigh - Mohammadreza Hassannejad Bibalan - Asghar Keshtkar
Distributed Data Processing for Multi-Agent Systems Via Wave Model
Saeedreza Tofighi - Masoud Shafiee
A New High Step-Up Quasi Z-Source DC-DC Converter Using Buffer and Switched Capacitor Techniques
Erfan Meshkizadeh - Ebrahim Afjei - Morteza Kheradmandi
Design and Modeling of Graphene Based Electro-absorption Modulator Integrated with Hybrid Plasmonic Waveguides
Hadi Soofi - Shima Karkon Bagheri - Hamid Vahed
Global Finite-Time Nonlinear Observers for a Class of Nonlinear Systems Subjected to Mismatched Uncertainties
َAli Abooee - Saeed Amiri - Mohammad Hadi Rezaei
A Novel Analytical Tuning Method for Designing of Composite Nonlinear Feedback Control Law in Continuous-time Dynamical Systems
Ali Vazani - Valiollah Ghaffari
طراحی بهینه پارکینگ خودروهای برقی با در نظر گرفتن عدم قطعیت منابع انرژی تجدیدپذیر
سید محمد هاشمی مصیر - میثم جعفری نوکندی - محمد بزرگپور رودباری
GAN-Driven Image Generation for Metamaterial Absorbers Using Mean and Variance Encoding
Atefe Shahsavaripour - Mohammad Hossein Badiei - Leila Yousefi - Ahmad Kalhor
A New Physical Philosophy to Model and Interpret Partial Discharge Phenomenon
Arman Vasigh Zadeh Ansari - Mahdi Vakilian
Robust H∞ Control Design for Variable-Speed Wind Turbines Using Bilinear Matrix Inequalities
Hamidreza Javanmardi - Alireza Hamedi - Mahya Rahimzadeh
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2