0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A Novel Approach to Pulmonary Embolism Segmentation: Increasing an Attention-based U-Net
نویسندگان :
Hanie Arabian
1
Alireza Karimian
2
Hosein Arabi
3
Marjan Mansourian
4
1- دانشگاه اصفهان
2- دانشگاه اصفهان
3- University of Geneva
4- دانشگاه علوم پزشکی اصفهان
کلمات کلیدی :
deep learning،image segmentation،pulmonary embolism،squeeze-and-attention block،u-net architecture
چکیده :
Pulmonary embolism (PE) is a life-threatening condition, often leading to late diagnoses. Diagnostic tools like Computed Tomography Pulmonary Angiography (CTPA) rely on radiologist skills, resulting in variable sensitivity and specificity. This study aims to leverage deep learning, specifically a convolutional neural network with U-net architecture enhanced by Squeeze-and-Attention and Long Short-Term Memory (LSTM) blocks, to improve the segmentation of emboli in CTPA images. Utilizing two datasets, CAD-PE (91 cases, 89 with PE) and FUMPE (35 cases, 33 with PE), the research assesses how increasing the number of network layers (57, 67, and 103) affects segmentation performance. The results demonstrated that the slice-wise sensitivity improved from 76.73±21.94 with a 57-layer architecture to 80.36±21.42 with a 67-layer architecture, indicating better pulmonary embolism detection (with a significant difference due to paired T-test P-value of less than 0.05). In addition, the patient-wise AUC slightly increases from 81.68±10.94 (57 layers) to 85.09±10.69 (67 layers) with a Kruskal-Wallis P-value of 0.0189, which indicates a significant difference between the networks’ performance. However, no significant improvement was observed with the 103-layer model, highlighting the potential for overfitting. Results from this study demonstrate the potential of deep learning algorithms in enhancing the accurate diagnosis of pulmonary embolism. Finally, the neural network's performance in segmenting pulmonary embolisms from CT images demonstrates promising directions with particular specificity and overall AUC strengths.
لیست مقالات
لیست مقالات بایگانی شده
کنترل درایو موتور DC بدون جاروبک سه فاز با اینورتر چهار سوییچه به روش کنترل پیش بین مدل مبتنی بر تعداد حالات کنترلی محدود (FCS-MPC)
ابوالفضل حلوایی نیاسر - سجاد محمدی کوجانی
Second-order Sliding Mode Control for DC-DC buck converter with input Voltage Ripple Elimination
Maede Azimi - Mehdi Asadi - Adel Zakipour
امکان سنجی نظری آشکارسازی گاز سولفید هیدروژن توسط سیلی گرافن (g-SiC2)
حامد مهدوی نژاد - رزا صفایی - محمدحسین شیخی
طراحی یک اینورتر سه فاز چند سطحی ترکیبی جدید و بررسی کاربرد آن در کنترل موتور القایی
حسین جعفری - داریوش نظرپور - سجاد گلشن نواز - ابراهیم بابائی
Optimal Operation of Lithium-Ion Batteries Considering Degradation Cost in Vehicle-to-Grid Systems
Mahdi Esfandiari - Amin Rafrafi - Abolfazl Pirayesh
Job Title Prediction from Tweets Using Word Embedding and Deep Neural Networks
Shayan Vassef - Ramin Toosi - Mohammad Ali Akhaee
Gesture recognition of hand movements using mechanomyography
Ashkan Elyasinia - Raheleh Davoodi - Sedighe Dehghani
A Novel Analytical Tuning Method for Designing of Composite Nonlinear Feedback Control Law in Continuous-time Dynamical Systems
Ali Vazani - Valiollah Ghaffari
A High Gain Transformerless DC-DC Boost Converter Using LCD Network: Design and Experimental Verification
Hamed Hokmali - Ebrahim Afjei
Adaptive Attitude Synchronization and Tracking Control of Spacecraft Formation Flying using Reaction Wheel without Angular Velocity Measurement
Amin Mihankhah - Ali Doustmohammadi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3