0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Non-contact Radar Technology and Machine Learning for Automated Sleep Apnea-Hypopnea Syndrome Detection
نویسندگان :
ُSaman Faridsoltani
1
Mohaddeseh Sadeghi
2
Zahra Rahmani
3
Somayyeh Chamaani
4
1- دانشگاه خواجه نصیر الدین طوسی
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
3- دانشگاه صنعتی خواجه نصیرالدین طوسی
4- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
Sleep Apnea-Hypopnea Syndrome،Impulse-radio ultra-wideband radar،Variational mode decomposition،APNIWAVE database،Random forest
چکیده :
Sleep Apnea-Hypopnea Syndrome (SAHS) is a prevalent sleep disorder that significantly affecting patients' quality of life, often going undetected due to its appearance during sleep. The current gold standard for SAHS detection, polysomnogram, is costly and inconvenient for long-term monitoring. This paper introduces a novel method using non-contact Impulse-Radio Ultra-Wideband (IR-UWB) radar and machine learning to automatically detect apnea-hypopnea events. Initially, after selecting the appropriate target range bins from each radar data, the Variational Mode Decomposition (VMD) method is applied to reconstruct de-noised respiratory signals. Then, twenty time-frequency domain features are extracted from each signal, and the most optimal features are opted using the automatic Sequential Forward Feature Selection (SFFS) method. Finally, the selected features are fed into three different classifiers to distinguish between three events: normal, apnea, and others. The APNIWAVE database is used to assess the proposed SAHS detection approach. The results demonstrate an accuracy of 99.5% (with a sensitivity of 99.7%, specificity of 99.5%, and F1-score of 99.5%) in per-segment classification using a Random Forest (RF) classifier. Our method can be employed to create an affordable and reliable system for monitoring SAHS in a household setting.
لیست مقالات
لیست مقالات بایگانی شده
Q-Learning-Oriented Distributed Energy Management of Grid-Connected Microgrid
Esmat Samadi - Ali Badri - Reza Ebrahimpour
Switched-Inductor Cuk and SEPIC Power Factor Correction Rectifiers
Maryam Pourmahdi-torghabe - Hamed Heydari-doostabad - Reza Ghazi
Image-Based Self-Localization Using Differential Observation Angle Based on Real-World Features
Seyed Mohammad Bagher Seyedin - Mahdi Goodarzi - Fereidoon Behnia
مدلسازی نویز فاز در ساختار کاهنده نویز نوسانساز مبتنی بر تداخلسنجی
سیدمحمدعلی صدرقاینی - علی بنائی
Active Data Fusion in Deep Neural Networks via Separation Index
Movahed Jamshidi - Ahmad Kalhor - Abdol-Hossein Vahabie
Combination of Classifiers to Detecting Grade of Gliblastoma using MRS
Roqaie Moqadam - Nazila Loghmani - Meysam Siyahmansoori - Armin Allahverdy
Low Complexity Multi-User Indoor Localization Using Reconfigurable Intelligent Surface
Nooshin Afzali - Mohammad Javad Omidi - Keivan Navaie - Naghmeh Sadat Moayedian
طراحی روش مبتنی بر آنالیز پوش داده برای ارزیابی عملکرد ایستگاه های فوق توزیع و تعیین سطح مطلوب قابلیت اطمینان سیستم توزیع انرژی الکتریکی
محمد رستگار - زهرا یزدانپناه - محمد جوشکی
Multi-Agent Deployment Around a Source in the Plane Using Biased Extremum Seeking
Mohammadali Ghadiri-modarres - Mohsen Mojiri - Ehsan Fattahi
Depth Estimation in Monocular Images of Inside the Sewer Pipes for Navigation of Inspection Robots
Zeinab Maroufi - Alireza Hadi Hosseinabadi - Reza Askari moghadam
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2