0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Non-contact Radar Technology and Machine Learning for Automated Sleep Apnea-Hypopnea Syndrome Detection
نویسندگان :
ُSaman Faridsoltani
1
Mohaddeseh Sadeghi
2
Zahra Rahmani
3
Somayyeh Chamaani
4
1- دانشگاه خواجه نصیر الدین طوسی
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
3- دانشگاه صنعتی خواجه نصیرالدین طوسی
4- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
Sleep Apnea-Hypopnea Syndrome،Impulse-radio ultra-wideband radar،Variational mode decomposition،APNIWAVE database،Random forest
چکیده :
Sleep Apnea-Hypopnea Syndrome (SAHS) is a prevalent sleep disorder that significantly affecting patients' quality of life, often going undetected due to its appearance during sleep. The current gold standard for SAHS detection, polysomnogram, is costly and inconvenient for long-term monitoring. This paper introduces a novel method using non-contact Impulse-Radio Ultra-Wideband (IR-UWB) radar and machine learning to automatically detect apnea-hypopnea events. Initially, after selecting the appropriate target range bins from each radar data, the Variational Mode Decomposition (VMD) method is applied to reconstruct de-noised respiratory signals. Then, twenty time-frequency domain features are extracted from each signal, and the most optimal features are opted using the automatic Sequential Forward Feature Selection (SFFS) method. Finally, the selected features are fed into three different classifiers to distinguish between three events: normal, apnea, and others. The APNIWAVE database is used to assess the proposed SAHS detection approach. The results demonstrate an accuracy of 99.5% (with a sensitivity of 99.7%, specificity of 99.5%, and F1-score of 99.5%) in per-segment classification using a Random Forest (RF) classifier. Our method can be employed to create an affordable and reliable system for monitoring SAHS in a household setting.
لیست مقالات
لیست مقالات بایگانی شده
VM Placement in Accelerator-Equipped Data Centers Using Variable-Length Modified Genetic Algorithm
Aryo Yarahmadi - Mahmoud Momtazpour
Development of Reflectarray Antennas With a Deflected Beam: An Approach Based on Artificial Neural Networks
Mahdieh Esmaeiliporzani - Zahra Atlasbaf
Remote Sensing Image Registration Using Fast Visual Saliency and Improved SIFT
Fatemeh Khalili - Farbod Razzazi - Abolfazl Hosseini
بخشبندی خودکار تصاویر تشدید مغناطیسی ستون فقرات کمری با شبکه سِگیونِت
محمد انصاری فرد - رضا آقایی زاده ظروفی
High-Efficiency Soft-Switched Quadratic Ultra-High Step-Up DC-DC Converter with Low Voltage Stress on Semiconductors
Ali Nadermohammadi - Ali Seifi - Hamed Abdi - Pouya Abolhassani - Seyed Hossein Hosseini - Ebrahim Babaei
A Bi-Level Attack-Defense Model for the Forecasting False Data Injection Attacks on the Integrated Energy Systems
Maryam Azimi - Hamed Delkhosh - Mahdi Ghaedi
Lane Change Decision Making Using Deep Reinforcement Learning
Pedram Lamei - Mohammad Haeri
Non-isolated Ultra-high Step-Up Quadratic Converter With Low Voltage Stress and Continuous Input Current
Maryam Hajilou - Baharak Akhlaghi - Hosein Farzanehfard
Designing Music Recommendation System based on music Genre by using Bi-LSTM
Saman Mesghali - Javad Askari
A Time-Based Analogue-to-Digital Converter for ECG Applications
Atiyeh Karimlou - Mohammad Yavari
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2