0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Non-contact Radar Technology and Machine Learning for Automated Sleep Apnea-Hypopnea Syndrome Detection
نویسندگان :
ُSaman Faridsoltani
1
Mohaddeseh Sadeghi
2
Zahra Rahmani
3
Somayyeh Chamaani
4
1- دانشگاه خواجه نصیر الدین طوسی
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
3- دانشگاه صنعتی خواجه نصیرالدین طوسی
4- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
Sleep Apnea-Hypopnea Syndrome،Impulse-radio ultra-wideband radar،Variational mode decomposition،APNIWAVE database،Random forest
چکیده :
Sleep Apnea-Hypopnea Syndrome (SAHS) is a prevalent sleep disorder that significantly affecting patients' quality of life, often going undetected due to its appearance during sleep. The current gold standard for SAHS detection, polysomnogram, is costly and inconvenient for long-term monitoring. This paper introduces a novel method using non-contact Impulse-Radio Ultra-Wideband (IR-UWB) radar and machine learning to automatically detect apnea-hypopnea events. Initially, after selecting the appropriate target range bins from each radar data, the Variational Mode Decomposition (VMD) method is applied to reconstruct de-noised respiratory signals. Then, twenty time-frequency domain features are extracted from each signal, and the most optimal features are opted using the automatic Sequential Forward Feature Selection (SFFS) method. Finally, the selected features are fed into three different classifiers to distinguish between three events: normal, apnea, and others. The APNIWAVE database is used to assess the proposed SAHS detection approach. The results demonstrate an accuracy of 99.5% (with a sensitivity of 99.7%, specificity of 99.5%, and F1-score of 99.5%) in per-segment classification using a Random Forest (RF) classifier. Our method can be employed to create an affordable and reliable system for monitoring SAHS in a household setting.
لیست مقالات
لیست مقالات بایگانی شده
Improved Attention U-Net combined with Conditional Random Field for Ischemic Lesion Segmentation from Magnetic Resonance Images
Ali Rezaei - Asieh Khosravanian - Habibollah Danyali - Kamran Kazemi - Ardalan Aarabi
Mach-Zehnder Interferometer Cell for Realization of Quantum Computer; A Feasibility Study
Mobin Motaharifar - Hassan Kaatuzian
Energy Efficiency of UAV-based mmWave-mMIMO Systems Using Low-Precision ADCs
Sogol Moshirvaziri - Jamshid َAbouei
تحلیل عدم تعادل جریان سه فاز شبکه فشارضعیف توزیع در پی قطع هادی نول متصل به ترانسفورماتور با استفاده از مولفههای متقارن
احمد صالحی دوبخشری
Optimized 5G-MMW Compact Yagi-Uda Antenna Based on Machine Learning Methodology
Alireza Jafarieh - Mahdi Nouri - Hamid Behroozi
Fast and Low Power Modified Carry Look-Ahead Adder
Sanaz Salem - Amir hossein Owji
Experimental Study on Automatically Assembling Custom Catering Packages With a 3-DOF Delta Robot Using Deep Learning Methods
Reihaneh Yourdkhani - Arash Tavoosian - Navid Asadi Khomami - Mehdi Tale Masouleh
A novel clustering-based over-sampling technique for imbalanced data sets
Behzad Mirzaei - Hossein Nezamabadi-pour - Javad Mahmoodi
CNN-LSTM model for Confusion Classification; using Single-Channel EEG
Amirhossein Aran - Zahra Ghanbari - Mohammad Hassan Moradi
Highly Efficient Implementation of Chaotic Systems Utilizing High-Level Synthesis Tools
Mobin Vaziri - Hadi Jahanirad
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4