0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Non-contact Radar Technology and Machine Learning for Automated Sleep Apnea-Hypopnea Syndrome Detection
نویسندگان :
ُSaman Faridsoltani
1
Mohaddeseh Sadeghi
2
Zahra Rahmani
3
Somayyeh Chamaani
4
1- دانشگاه خواجه نصیر الدین طوسی
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
3- دانشگاه صنعتی خواجه نصیرالدین طوسی
4- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
Sleep Apnea-Hypopnea Syndrome،Impulse-radio ultra-wideband radar،Variational mode decomposition،APNIWAVE database،Random forest
چکیده :
Sleep Apnea-Hypopnea Syndrome (SAHS) is a prevalent sleep disorder that significantly affecting patients' quality of life, often going undetected due to its appearance during sleep. The current gold standard for SAHS detection, polysomnogram, is costly and inconvenient for long-term monitoring. This paper introduces a novel method using non-contact Impulse-Radio Ultra-Wideband (IR-UWB) radar and machine learning to automatically detect apnea-hypopnea events. Initially, after selecting the appropriate target range bins from each radar data, the Variational Mode Decomposition (VMD) method is applied to reconstruct de-noised respiratory signals. Then, twenty time-frequency domain features are extracted from each signal, and the most optimal features are opted using the automatic Sequential Forward Feature Selection (SFFS) method. Finally, the selected features are fed into three different classifiers to distinguish between three events: normal, apnea, and others. The APNIWAVE database is used to assess the proposed SAHS detection approach. The results demonstrate an accuracy of 99.5% (with a sensitivity of 99.7%, specificity of 99.5%, and F1-score of 99.5%) in per-segment classification using a Random Forest (RF) classifier. Our method can be employed to create an affordable and reliable system for monitoring SAHS in a household setting.
لیست مقالات
لیست مقالات بایگانی شده
طبقهبندی تصاویر سلولی پاپ اسمیر مبتنی بر الگوریتمهای ترتیبی یادگیری جمعی و شبکههای عمیق استخراج ویژگی
زهرا کمالی - محمدصادق هل فروش - کامران کاظمی - مژگان اکبرزاده
Mapping Human Grasping to 3-Finger Grippers: A Deep Learning Perspective
Fatemeh Naeinian - Elnaz Balazadeh - Mehdi Tale Masouleh
تخمین غلظت ید و زینان در یک نیروگاه هستهای با استفاده از فیلتر کالمن بیرد تحت شرایط مختلف توان راکتور
حسین زحمتکش - حسین الیاسی
یک روش جدید در تشخیص اختلال طیف اوتیسم از تصاویر چهره کودکان با استفاده از معماری چندمقیاسی MS-ViT و پردازش لبهای
خسرو رضائی - طیبه شمولی جوانمردی - امیر محمد حیدری
A High Dynamic Range Differential Rectifier for RF Energy Harvesting
Ataollah Mahsafar - Mohammad Yavari
A New Atrial Fibrillation Detection System with Noise Cancellation and Signal Annotation
Amirali Banaei Kashani - Bardia Baraeinejad - Mohammad Fakharzadeh
A Novel Method for Partial Discharge Localization in Power Distribution Cables Using Phase Resolved Patterns
Arman Vasigh zadeh ansari - Mehdi Vakilian
Design an Intelligent Fault Detection System for Spring-Drive Operating Mechanism of SF6 High Voltage Circuit Breaker Using ADAMS
Milad Tahvilzadeh - Mehdi Aliyari Shooredeli - Ali asghar Razi Kazemi
A High Responsivity Plasmonic Internal Photoemission detector for Optical Communication
Faramarz Alihosseini - Aref Rasoulzadeh Zali - Tavakol Pakizeh - Hesam Zandi
Image steganography Based on Chaos permutation, authentication and wiener deconvolution
Ali Sheidaee - Mohammad Asadpour - Leili Farzinvash
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0