0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Design an Intelligent Fault Detection System for Spring-Drive Operating Mechanism of SF6 High Voltage Circuit Breaker Using ADAMS
نویسندگان :
Milad Tahvilzadeh
1
Mehdi Aliyari Shooredeli
2
Ali asghar Razi Kazemi
3
1- دانشگاه خواجه نصیرالدین طوسی
2- دانشگاه خواجه نصیرالدین طوسی
3- دانشگاه خواجه نصیرالدین طوسی
کلمات کلیدی :
High voltage circuit breaker (HVCB), Fault detection, Machine Learning, Travel curve (TC)
چکیده :
High-voltage circuit breakers (HVCBs) are one of the main components of a power system that have a protective function. That is why monitoring and faults diagnosing HVCBs are essential to prevent damage to other parts of system. This paper presents a design of an intelligent fault detection system, using machine learning algorithms for a typical EDF, 72.5 kV, SF6 HVCB with a spring drive mechanism. The faults of the drive mechanism appear in the travel curve of the contacts, which is used in the design of the fault detection model. As collecting experimental data is costly, ADAMS software has been employed to provide various scenarios. Subsequently, the database required to train the fault detection model is generated based on the extracting the appropriate feature from the curves. Afterwards, it is possible to compare the performance of machine learning models and provide a suitable model for fault detection. Finally, using the optimum model enables us to detect the state of the HVCBs. In the case of faulty state, the origin of the abnormality can be determined according to the faults considered in the database.
لیست مقالات
لیست مقالات بایگانی شده
A Band-pass Power Divider Based on Substrate Integrated Plasmonic Waveguide
Salma Mirhadi - Shamsi Soleimani
Implementation of an Optimized Deep Learning Model to Assess Pediatric Sleep Apnea Severity Using SpO2 Signals on Resource-Limited Microcontrollers
Erfan Mortazavi - Hanieh Mohammadi - Bahram Tarvirdizadeh - Khalil Alipour - Mohammad Ghamari
Low Complexity Multi-User Indoor Localization Using Reconfigurable Intelligent Surface
Nooshin Afzali - Mohammad Javad Omidi - Keivan Navaie - Naghmeh Sadat Moayedian
Intrusion Detection System for Securing Agriculture 4.0 against DDoS Attacks using Deep Learning and Machine Learning Models
Mohammad Mirmarghabi - Ahmad Afshar - Hajar Atriyanfar
Analysis of the RCS of Luneburg Reflector in Bistatic Mode
Mohammad Amin Abdollahi - Gholamreza Moradi
Low-Power Fano Resonance-Based MIM Plasmonic Switch Using Kerr-Type Nonlinear Material
Yousef Karimi - Hassan Kaatuzian
An Ensemble Model for Sleep Stages Classification
Sahar Hassanzadeh Mostafaei - Jafar Tanha - Amir Sharafkhaneh - Zohair Hassanzadeh Mostafaei - Mohammed Hussein Ali Al-jaf - Alireza Fakhim babaei
تجزیه و تحلیل امواج فیبریلاتور دهلیزی به منظور طبقهبندی AF با استفاده از موجک لیدر
سارا میهن دوست
A Subsurface Microwave Imaging System Based on the Combination of Sub-Band-Subspace Images
Mohammad Ramezaninia - Mohammad Zoofaghari - Abolfazl Gheibollahi - Abbas Ali Heidari
Model Predictive Control for Interconnected Systems with Communication Delays
Reza Mohammadikia - Mahsan Tavakoli-Kakhki
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2