0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Design an Intelligent Fault Detection System for Spring-Drive Operating Mechanism of SF6 High Voltage Circuit Breaker Using ADAMS
نویسندگان :
Milad Tahvilzadeh
1
Mehdi Aliyari Shooredeli
2
Ali asghar Razi Kazemi
3
1- دانشگاه خواجه نصیرالدین طوسی
2- دانشگاه خواجه نصیرالدین طوسی
3- دانشگاه خواجه نصیرالدین طوسی
کلمات کلیدی :
High voltage circuit breaker (HVCB), Fault detection, Machine Learning, Travel curve (TC)
چکیده :
High-voltage circuit breakers (HVCBs) are one of the main components of a power system that have a protective function. That is why monitoring and faults diagnosing HVCBs are essential to prevent damage to other parts of system. This paper presents a design of an intelligent fault detection system, using machine learning algorithms for a typical EDF, 72.5 kV, SF6 HVCB with a spring drive mechanism. The faults of the drive mechanism appear in the travel curve of the contacts, which is used in the design of the fault detection model. As collecting experimental data is costly, ADAMS software has been employed to provide various scenarios. Subsequently, the database required to train the fault detection model is generated based on the extracting the appropriate feature from the curves. Afterwards, it is possible to compare the performance of machine learning models and provide a suitable model for fault detection. Finally, using the optimum model enables us to detect the state of the HVCBs. In the case of faulty state, the origin of the abnormality can be determined according to the faults considered in the database.
لیست مقالات
لیست مقالات بایگانی شده
Estimation of the Arc Model Parameters Using Heuristic Optimization Methods
Sadegh Ghavami - Ali A Razi-kazemi
Deep SqueezeNet Based Technique for Detection of High Impedance Arcing Faults in Electric Power Distribution Networks
Amin Mohammadi - Mohsen Jannati - Mohammadreza Shams
Fully Soft-Switched Quadratic High Step-Up DC-DC Converter with a Single Switch and Low Input Current Ripple for Renewable Energy Applications
Ali Nadermohammadi - Hamed Abdi - Pouya Abolhassani - Seyed Hossein Hosseini - Mehran Sabahi - Naghi Rostami
Switched-Inductor Cuk and SEPIC Power Factor Correction Rectifiers
Maryam Pourmahdi-torghabe - Hamed Heydari-doostabad - Reza Ghazi
A Communication-Aware Scheduler for Containers in a Kubernetes Environment Using Girvan-Newman Clustering
Marzie Norouzi Dehnashi - Mahmoud Momtazpour - Seyyed Ahmad Javadi
An Autonomous Multi Agent Q-Learning Approach for Resource Allocation in D2D-Enabled Heterogeneous Networks
Pouya Akhoundzadeh - Ghasem Mirjalily - Mohammad taghi Saadeghi
Design of a Three-Stage OTA with Wide Capacitive Load Range Using Dual-Path and Q-Factor Compensation
Mohammadreza Abedi Orang
A New Unsupervised Feature Learning Method for Object Recognition using Prior-Knowledge Data
Ashkan Farrokhi - Hadi Seyedarabi
A Transformerless Single-Switch DC-DC Boost Converter Suitable for Renewable Energy Applications
Saed Mahmoud Alilou - Sasan Ahmadi - Mohammad Maalandish - Seyed Hossein Hosseini
پیشبینی بازار سرمایه به کمک دادهکاوی با الگوریتمهای رگرسیونی
شیوا نمایان - محمدشهرام معین
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4