0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Design an Intelligent Fault Detection System for Spring-Drive Operating Mechanism of SF6 High Voltage Circuit Breaker Using ADAMS
نویسندگان :
Milad Tahvilzadeh
1
Mehdi Aliyari Shooredeli
2
Ali asghar Razi Kazemi
3
1- دانشگاه خواجه نصیرالدین طوسی
2- دانشگاه خواجه نصیرالدین طوسی
3- دانشگاه خواجه نصیرالدین طوسی
کلمات کلیدی :
High voltage circuit breaker (HVCB), Fault detection, Machine Learning, Travel curve (TC)
چکیده :
High-voltage circuit breakers (HVCBs) are one of the main components of a power system that have a protective function. That is why monitoring and faults diagnosing HVCBs are essential to prevent damage to other parts of system. This paper presents a design of an intelligent fault detection system, using machine learning algorithms for a typical EDF, 72.5 kV, SF6 HVCB with a spring drive mechanism. The faults of the drive mechanism appear in the travel curve of the contacts, which is used in the design of the fault detection model. As collecting experimental data is costly, ADAMS software has been employed to provide various scenarios. Subsequently, the database required to train the fault detection model is generated based on the extracting the appropriate feature from the curves. Afterwards, it is possible to compare the performance of machine learning models and provide a suitable model for fault detection. Finally, using the optimum model enables us to detect the state of the HVCBs. In the case of faulty state, the origin of the abnormality can be determined according to the faults considered in the database.
لیست مقالات
لیست مقالات بایگانی شده
حسگر ضریب شکست مبتنی بر فانو رزونانس در موجبرهای فلز- عایق- فلز، با رزوناتور صفحهای تزویج شده از جانب
تورج هاشمی - نسرین عبدالهی برازجان - عباس علی قنبری
Design and Simulation of a MEMS Capacitive Switch With Low Pull-in Voltage and High Switching Speed
Davoud Razaghpoor - Mir Majid Ghasemi - Saeid Afrang - Amir Fathi - Asma Akbarli
Formation of Singular Multi-Agent Systems via a New Iterative Learning Control Approach
Ali Raddanipour - Masoud Shafiee
HFO detection from iEEG signals in epilepsy using time-trained graphs and Deep Graph Convolutional Neural Network
Fatemeh Gharebaghi asl - Sepideh Hajipour Sardouie
Nonvolatile Quaternary Pre-Charged MRAM Cell Design based on Emerging Technologies
Motahareh BahmanAbadi - Abdolah Amirany - Mohammad Hossein Moaiyeri
Controllerless SDN: A Novel Architecture to Improve Software-Defined Networks Security
Sayfollah Rohollahi - Siavash Khorsandi
تخصیص هارمونیک مجاز در شبکههای فشار قوی مبتنی بر استاندارد IEC 61000-3-6
محسن صفرزاده - سیدمرتضی میرباقری
High Performance and Low Power Spintronic Binarized Neural Network Hardware Accelerator
Milad Tanavardi Nasab - Arefe Amirany - Mohammad Hossein Moaiyeri - Kian Jafari
Optimal Control of Rectangular Singular Systems
Masoud Shafiee
طراحی و شبیه سازی یک تقویت کننده کم نویز پهن باند در باند K (18 تا 27 گیگاهرتز)
نوید نصیری - حسین شمسی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2