0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
HFO detection from iEEG signals in epilepsy using time-trained graphs and Deep Graph Convolutional Neural Network
نویسندگان :
Fatemeh Gharebaghi asl
1
Sepideh Hajipour Sardouie
2
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
کلمات کلیدی :
intracranial Electroencephalography (iEEG)،Epilepsy،(High Frequency Oscillations (HFOs،Deep Graph Convolutional Neural Network (DGCNN)
چکیده :
Intracranial electroencephalography (iEEG) is a type of brain signal widely used to study neurological diseases. Usually, the iEEG signal has frequency components of up to 80 Hz. However, recent studies have shown that, in some conditions, such as epilepsy, the brain signal contains frequency components higher than 80 Hz. These are called high-frequency oscillations (HFOs), and are considered biomarkers for epilepsy. This paper proposes a new methodology for the automated detection of HFOs based on time-domain features of signals and a deep graph convolutional neural network (DGCNN) algorithm. The proposed method was evaluated using the iEEG data of the Fedele’s group from 20 patients with medically intractable epilepsy. The method assumes that the temporal data structure is a graph structure that differs between HFO and non-HFO intervals. By treating the sequence of time samples as the nodes of a graph and training the adjacency matrix of the resulting graph using time data, different graphs are obtained for HFO and non-HFO intervals. Moreover, other features such as RMS, STE, LL, and Teager energy distinguish the intervals. Therefore, these features are considered as node features that help to increase classification accuracy. The DGCNN network is used to classify the time-trained graphs with extracted node features. The proposed methodology has the following significant advantages: 1) it achieves a higher sensitivity than the recently reported HFO detectors using the DGCNN classifier, and 2) it can automatically extract the common features of HFO events from different patients and is more robust, unlike other automated methods in the literature where the features of HFOs were manually extracted based on researchers' knowledge, which may be subject to observer bias. The proposed method achieved 90.7% sensitivity and 93.3% specificity so it has a higher sensitivity than the recently reported HFO detectors.
لیست مقالات
لیست مقالات بایگانی شده
Peer-to-peer Energy Sharing Considering Prosumers' Preferences and Load Uncertainties
Mohammad Bagher Moradi - Mohammad Hasan Nazari - Seyed Hossein Hosseinian - Hamed Nafisi
Image quality equations for focused transducer in circular photoacoustic computed tomography
Soheil Hakakzadeh - Zahra Kavehvash
Gearbox Fault Detection Using Continuous Wavelet Transform and Vision Transformer (ViT)
Ali Asadian - Yassin Riyazi - Moosa Ayati
پیشنهاد یک ساختار جدید AC/DC مبتنی بر مبدلهای SEPIC و CUK بهبودیافته برای کاربرد شارژر موتورسیکلتهای الکتریکی
سجاد قابلی ثانی - رحیم عجبی فرشباف - میثم صادقی - محمد خدایاری
Fault tolerant control design for linear systems based on cubic observers
Mahsa Hasanshahi - Malihe Maghfoori Farsangi - Elham Amini Boroujeni
گیمیفیکیشن یک رویکرد نوآورانه جهت کاهش مصرف برق دربخش خانگی
حمید حقرجو - مرضیه زارع زاده کللی - مهدی اشکپور مطلق
Giant Optical Nonreciprocity with Magnetized Epsilon-Near-Zero Materials
Zahra Chamani - Abolghasem Zeidaabadi Nezhad - Mahyar Dehdast - Zaker Hossein Firouzeh
Design and Simulation of a Flight Control System for a Quadcopter using Fuzzy-PID Controller
Seyedeh Mahsa Zakipour Bahambari - Mojtaba Mohsen Haghighi - Saeed Khankalantary
بررسی تاثیر دینامیکی سیستمهای انرژی خورشیدی متصل به شبکه بر بارگذاری ترانسفورماتور و بهبود عملکرد شبکه فشار ضعیف توزیع نیروی برق
مهدی محمدی - رضا خدادی - علی معصومی
Performance analysis under the Independent Fluctuating Two-Ray (IFTR) Fading in RIS-Assisted Millimeter Wave Communications
Maryam Olyaee - Hadi Hashemi - Juan Manuel Romero Jerez
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.7.4