0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
HFO detection from iEEG signals in epilepsy using time-trained graphs and Deep Graph Convolutional Neural Network
نویسندگان :
Fatemeh Gharebaghi asl
1
Sepideh Hajipour Sardouie
2
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
کلمات کلیدی :
intracranial Electroencephalography (iEEG)،Epilepsy،(High Frequency Oscillations (HFOs،Deep Graph Convolutional Neural Network (DGCNN)
چکیده :
Intracranial electroencephalography (iEEG) is a type of brain signal widely used to study neurological diseases. Usually, the iEEG signal has frequency components of up to 80 Hz. However, recent studies have shown that, in some conditions, such as epilepsy, the brain signal contains frequency components higher than 80 Hz. These are called high-frequency oscillations (HFOs), and are considered biomarkers for epilepsy. This paper proposes a new methodology for the automated detection of HFOs based on time-domain features of signals and a deep graph convolutional neural network (DGCNN) algorithm. The proposed method was evaluated using the iEEG data of the Fedele’s group from 20 patients with medically intractable epilepsy. The method assumes that the temporal data structure is a graph structure that differs between HFO and non-HFO intervals. By treating the sequence of time samples as the nodes of a graph and training the adjacency matrix of the resulting graph using time data, different graphs are obtained for HFO and non-HFO intervals. Moreover, other features such as RMS, STE, LL, and Teager energy distinguish the intervals. Therefore, these features are considered as node features that help to increase classification accuracy. The DGCNN network is used to classify the time-trained graphs with extracted node features. The proposed methodology has the following significant advantages: 1) it achieves a higher sensitivity than the recently reported HFO detectors using the DGCNN classifier, and 2) it can automatically extract the common features of HFO events from different patients and is more robust, unlike other automated methods in the literature where the features of HFOs were manually extracted based on researchers' knowledge, which may be subject to observer bias. The proposed method achieved 90.7% sensitivity and 93.3% specificity so it has a higher sensitivity than the recently reported HFO detectors.
لیست مقالات
لیست مقالات بایگانی شده
A fair-optimal solution for multi-objective optimization based on Shapley value
Mohammadreza Mohammadhasani - Habib Rajabi Mashhadi
طبقهبندی محیط صوتی با استفاده از ویژگی ترکیبی مبتنی بر فیلتربانک گابور
مسعود گراوانچی زاده - سپیده اختری خسروشاهی - سحر ذاکری
CatBoost Classifier For DDoS Detection In SDN Using Ryu Controller
Yazdan etdali Mohamadreza Noorifard
Optimal Operation of Lithium-Ion Batteries Considering Degradation Cost in Vehicle-to-Grid Systems
Mahdi Esfandiari - Amin Rafrafi - Abolfazl Pirayesh
طراحی روش مبتنی بر آنالیز پوش داده برای ارزیابی عملکرد ایستگاه های فوق توزیع و تعیین سطح مطلوب قابلیت اطمینان سیستم توزیع انرژی الکتریکی
محمد رستگار - زهرا یزدانپناه - محمد جوشکی
Scattering by an array of PEC cylinders in ferrite media using spectral technique
Zahra Bahrami - Asghar Keshtkar - Ayaz Ghorbani
Attractors Manipulation in Denoising Autoencoders for Robust Phone Recognition
Shaghayegh Reza - Seyyed Ali Seyyedsalehi - Seyyedeh Zohreh Seyyedsalehi
Improving the Performance of Unified Power Quality Conditioner Using Interval Type 2 Fuzzy Control
Farzad Rastegar - Zohreh Paydar
بیشینه سازی ظرفیت در رله های تمام دوطرفه تک مسیره با در نظر گرفتن اختلالات سخت افزاری
حسین حصاربنی - زهرا کشاورز گندمانی
Ultra-Low Power Current-Mode ASK Demodulator for Contactless Smart Cards
Somayeh Yousefi - Mohsen Jalali
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2