0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
HFO detection from iEEG signals in epilepsy using time-trained graphs and Deep Graph Convolutional Neural Network
نویسندگان :
Fatemeh Gharebaghi asl
1
Sepideh Hajipour Sardouie
2
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
کلمات کلیدی :
intracranial Electroencephalography (iEEG)،Epilepsy،(High Frequency Oscillations (HFOs،Deep Graph Convolutional Neural Network (DGCNN)
چکیده :
Intracranial electroencephalography (iEEG) is a type of brain signal widely used to study neurological diseases. Usually, the iEEG signal has frequency components of up to 80 Hz. However, recent studies have shown that, in some conditions, such as epilepsy, the brain signal contains frequency components higher than 80 Hz. These are called high-frequency oscillations (HFOs), and are considered biomarkers for epilepsy. This paper proposes a new methodology for the automated detection of HFOs based on time-domain features of signals and a deep graph convolutional neural network (DGCNN) algorithm. The proposed method was evaluated using the iEEG data of the Fedele’s group from 20 patients with medically intractable epilepsy. The method assumes that the temporal data structure is a graph structure that differs between HFO and non-HFO intervals. By treating the sequence of time samples as the nodes of a graph and training the adjacency matrix of the resulting graph using time data, different graphs are obtained for HFO and non-HFO intervals. Moreover, other features such as RMS, STE, LL, and Teager energy distinguish the intervals. Therefore, these features are considered as node features that help to increase classification accuracy. The DGCNN network is used to classify the time-trained graphs with extracted node features. The proposed methodology has the following significant advantages: 1) it achieves a higher sensitivity than the recently reported HFO detectors using the DGCNN classifier, and 2) it can automatically extract the common features of HFO events from different patients and is more robust, unlike other automated methods in the literature where the features of HFOs were manually extracted based on researchers' knowledge, which may be subject to observer bias. The proposed method achieved 90.7% sensitivity and 93.3% specificity so it has a higher sensitivity than the recently reported HFO detectors.
لیست مقالات
لیست مقالات بایگانی شده
Noninvasive Diagnosis of the Type of Breast Tumor through Artificial Neural Networks
Pooya Tahmasebi - Maryam Mehdizadeh Dastjerdi - Ali Fallah - Saeid Rashidi
One-Way Edge Modes Induced by Synthetic Magnetic Field in Time-Varying LC Circuit
Sadeq Bahmani - Amir Nader Askarpour
طراحی و بررسی یک اینورتر چند سطحی جدید با کاهش تعداد ادوات قدرت به کار گرفته شده
حسین جعفری - داریوش نظرپور - سجاد گلشن نواز - ابراهیم بابائی
بکارگیری تکنیک کنترل مقاوم جهت طراحی مسیر حرکت خودرو در مانورهای اضطراری ممانعت از برخورد
محمد امین قماشی - رضا کاظمی
بهبود بازدهی انرژی در اینترنت اشیاء باند باریک با وفقیسازی لینک به کمک یادگیری عمیق
سمانه امیریان - محمدعلی سبقتی
Combination of Classifiers to Detecting Grade of Gliblastoma using MRS
Roqaie Moqadam - Nazila Loghmani - Meysam Siyahmansoori - Armin Allahverdy
Zero control effort approach to perturbed coupled orbit-attitude periodic solution at three-body problem: Earth-Mars system
Amirreza Kosari - Ehsan Abbasali - Majid Bakhtiari
طراحی و تحلیل یک حسگر پلاسمونیک ضریب شکست بر پایه فیبر بلور فتونی با هدف بهبود مشخصات فنی
علی یاوری - حسن کاتوزیان - سارا قلی نژاد شفق
A High Linearity Wideband Low-Noise Amplifier Using Capacitor Cross-Coupled Common-Gate Structure
Abolfazl Rajaiyan - Fahimeh Rahimi - Mehdi Saberi
GAN-Driven Image Generation for Metamaterial Absorbers Using Mean and Variance Encoding
Atefe Shahsavaripour - Mohammad Hossein Badiei - Leila Yousefi - Ahmad Kalhor
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2