0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
HFO detection from iEEG signals in epilepsy using time-trained graphs and Deep Graph Convolutional Neural Network
نویسندگان :
Fatemeh Gharebaghi asl
1
Sepideh Hajipour Sardouie
2
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
کلمات کلیدی :
intracranial Electroencephalography (iEEG)،Epilepsy،(High Frequency Oscillations (HFOs،Deep Graph Convolutional Neural Network (DGCNN)
چکیده :
Intracranial electroencephalography (iEEG) is a type of brain signal widely used to study neurological diseases. Usually, the iEEG signal has frequency components of up to 80 Hz. However, recent studies have shown that, in some conditions, such as epilepsy, the brain signal contains frequency components higher than 80 Hz. These are called high-frequency oscillations (HFOs), and are considered biomarkers for epilepsy. This paper proposes a new methodology for the automated detection of HFOs based on time-domain features of signals and a deep graph convolutional neural network (DGCNN) algorithm. The proposed method was evaluated using the iEEG data of the Fedele’s group from 20 patients with medically intractable epilepsy. The method assumes that the temporal data structure is a graph structure that differs between HFO and non-HFO intervals. By treating the sequence of time samples as the nodes of a graph and training the adjacency matrix of the resulting graph using time data, different graphs are obtained for HFO and non-HFO intervals. Moreover, other features such as RMS, STE, LL, and Teager energy distinguish the intervals. Therefore, these features are considered as node features that help to increase classification accuracy. The DGCNN network is used to classify the time-trained graphs with extracted node features. The proposed methodology has the following significant advantages: 1) it achieves a higher sensitivity than the recently reported HFO detectors using the DGCNN classifier, and 2) it can automatically extract the common features of HFO events from different patients and is more robust, unlike other automated methods in the literature where the features of HFOs were manually extracted based on researchers' knowledge, which may be subject to observer bias. The proposed method achieved 90.7% sensitivity and 93.3% specificity so it has a higher sensitivity than the recently reported HFO detectors.
لیست مقالات
لیست مقالات بایگانی شده
بررسی تاثیر اعمال پوشش مش متال در مقاومت حرارتی و خوردگی سیم فولادی استحکام بالا بعنوان مغزی هادی های پرظرفیت ACSS
فائزه راد - مهرنوش طاهرخانی - ناصر میرشاه ولایتی - عبداله جواهری
Primary Frequency Support in Clustered Unit Commitment with Battery Energy Storage and High Renewable Penetration
Abbas Abdollahi-Veshvaee - Turaj Amraee
Shielding factor enhancement method for Bi-stage active shield in SQUID-based Magnetocardiography system
Zeynab Alipour - Fatemeh Esmaili - Faezeh Shanehsazzadeh - Mehdi Fardmanesh
Family of Multifunctional Controllable Converters for Grid, Battery, and PV-Powered EV Charging Station Applications
Homayon Soltani Gohari - Amir Safaeinasab - Karim Abbaszadeh
Adaptive synchronous switching of uncompensated open transmission lines Realizing the line’s Parameters, and the pre-arcing interval
Alireza Karimonnafs - Mehdi Vakilian
بررسی عملکرد چرخاننده موجبری صفحه E با شبیهسازی جفتیده مغناایستایی-الکترومغناطیسی
زهرا عابدان - محمد حسین حسینی
A straightforward approach for measuring blood pressure in an upper arm digital blood pressure monitor
Mohammad Soroush Rezaei - Mahdi Khalilzadeh Shabestari - Seyed Yousef Jazaery Farsany - Danial Katoozian - Hossein Hosseini-Nejad
A Hybrid Approach for Multimodal Biometric Recognition based on Feature Level Fusion in Reproducing Kernel Hilbert Space
Mohammad Hassan Safavipour - Mohammad Ali Doostari - Hamed Sadjedi
اصلاح مسیرخروجی ID FANتا دودکش اشکودا و امکان سنجی بازیابی حرارتی دود
یاشار مغمومی - فرشته صادقی
New Single Phase Direct AC-AC Converters As A Series Static Digital Voltage Stabilizer With The Introduction Of Transformer And Transformerless Network Connection
Seyed mohsen Mortazavi - Reza Beiranvand
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2