0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
HFO detection from iEEG signals in epilepsy using time-trained graphs and Deep Graph Convolutional Neural Network
نویسندگان :
Fatemeh Gharebaghi asl
1
Sepideh Hajipour Sardouie
2
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
کلمات کلیدی :
intracranial Electroencephalography (iEEG)،Epilepsy،(High Frequency Oscillations (HFOs،Deep Graph Convolutional Neural Network (DGCNN)
چکیده :
Intracranial electroencephalography (iEEG) is a type of brain signal widely used to study neurological diseases. Usually, the iEEG signal has frequency components of up to 80 Hz. However, recent studies have shown that, in some conditions, such as epilepsy, the brain signal contains frequency components higher than 80 Hz. These are called high-frequency oscillations (HFOs), and are considered biomarkers for epilepsy. This paper proposes a new methodology for the automated detection of HFOs based on time-domain features of signals and a deep graph convolutional neural network (DGCNN) algorithm. The proposed method was evaluated using the iEEG data of the Fedele’s group from 20 patients with medically intractable epilepsy. The method assumes that the temporal data structure is a graph structure that differs between HFO and non-HFO intervals. By treating the sequence of time samples as the nodes of a graph and training the adjacency matrix of the resulting graph using time data, different graphs are obtained for HFO and non-HFO intervals. Moreover, other features such as RMS, STE, LL, and Teager energy distinguish the intervals. Therefore, these features are considered as node features that help to increase classification accuracy. The DGCNN network is used to classify the time-trained graphs with extracted node features. The proposed methodology has the following significant advantages: 1) it achieves a higher sensitivity than the recently reported HFO detectors using the DGCNN classifier, and 2) it can automatically extract the common features of HFO events from different patients and is more robust, unlike other automated methods in the literature where the features of HFOs were manually extracted based on researchers' knowledge, which may be subject to observer bias. The proposed method achieved 90.7% sensitivity and 93.3% specificity so it has a higher sensitivity than the recently reported HFO detectors.
لیست مقالات
لیست مقالات بایگانی شده
A Single-Switch Single-Inductor High Step-Up DC-DC Converter with Single-Input and Dual-Output Ports
Ali Nadermohammadi - Saed Mahmoud Alilou - Mohammad Maalandish - Seyed Hossein Hosseini - Mehdi Abapour - Kazrm Zare
Modeling and control of two PPR cooperative manipulations with a passive joint
Hassan Khosravi - Farhad Fani Saberi - Rasul Fesharakifard
تخصیص هارمونیک مجاز در شبکههای فشار قوی مبتنی بر استاندارد IEC 61000-3-6
محسن صفرزاده - سیدمرتضی میرباقری
Wind-Robust Sea-Ice Discrimination from Sentinel-1 Texture Features
Parsa Shamsaddini - Ahmad Keshavarz - Stefano Zecchetto
کدینگ فیبوناچی جهش یافته: ارائه یک روش برای افزایش قابلیت اطمینان در شبکههای روی تراشه سهبعدی
مجتبی فرمانی - سروین ناظر جعفری - زهرا شیرمحمدی
ساخت و مشخصه یابی حسگر گاز مونوکسیدکربن مبتنی بر هتروساختار p-n نیترید کربن گرافیتی متخلخل-اکسید مس
سمیرا جوانمردی - شیرین نصر اصفهانی - محمد حسین شیخی
Design of a 2MW Medium Voltage Conventional Hybrid DC Circuit Breaker for Railway Application
Seyed Hamid Khalkhali - Mohsen Taghizadeh Kejani - Ali Asghar Razi Kazemi
تحلیل دینامیکی ماشین سنکرون مغناطیس دائم با آهنربای جانبی و تحلیل خطای اتصال کوتاه داخلی و ضعیف شدن آهنربا
آزیتا فتحی - پیمان نادری
Deep Convolutional Neural Network for ADHD Classification using resting-state fMRI
MohammadHadi Firouzi - Maliheh Ahmadi - Kamran Kazemi - Mohammad Sadegh Helfroush - Ardalan Aarabi
طراحی تنظیمکنندهی خروجی بهینهی مبتنی بر یادگیری تقویتی ایمن با استفاده از تابع مانع کنترلی نمایی
سیدرضا اصغری - سعید شمقدری
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4