0% Complete
صفحه اصلی
/
بیست و نهمین کنفرانس مهندسی برق ایران
A Coronavirus Herd Immunity Optimizer For Intrusion Detection System
نویسندگان :
Amir Soltany Mahboob
1
Hadi Shahriar Shahhoseini
2
Mohammad Reza Ostadi Moghaddam
3
Shima Yousefi
4
1- دانشگاه علم و صنعت ایران
2- دانشگاه علم و صنعت ایران
3- دانشگاه علم و صنعت ایران
4- دانشگاه علم و صنعت ایران
کلمات کلیدی :
Intrusion detection system, feature selection, coronavirus herd immunity optimizer, Artificial Neural Network classifier, K-Nearest Neighbor classifier
چکیده :
Intrusion Detection System (IDS) is considered as one of the essential components of a secure network. Due to the high number of network packet features, one of the major problems of IDS is false intrusion alerts and low intrusion detection rates. Feature selection removes all redundant or irrelevant features among the various features of network packets. For this reason, it plays a pivotal role in overcoming the mentioned problems and can improve the accuracy of intrusion detection system. In this paper, a new human-inspired optimization algorithm called coronavirus herd immunity optimizer (CHIO) is proposed for feature selection in IDS. CHIO is able to select the optimal subset of features from numerous features without affecting system performance. In order to select the feature, two types of classifiers, K-Nearest Neighbor (KNN) and Artificial Neural Network (ANN), are used to obtain the accuracy of intrusion detection. In addition, the ANN classifier is trained with the classic Gradient Descent (GD) method as well as the two intelligent methods Artificial Bee Colony (ABC) and Harmony Search (HS). In order to demonstrate the performance, our method is tested on 20% of NSL-KDD and its results are reported and compared to other studies. The proposed method has been able to achieve better performance in terms of intrusion detection accuracy and number of features compared to similar works.
لیست مقالات
لیست مقالات بایگانی شده
Large Scale Indoor VLC Positioning Using Image Sensor with Limited Field of View
Arezoo Kabiri - Foroogh Sadat Tabataba
A New Approach to Determine Maximum Allowable Penetration level of LSPVPPs Considering Transient Angle Stability
Siavash Yari - Hamid Khoshkhoo
The Effect of Optimal PMU Placement in Power System State Estimation considering the Seasonal Load Curve
Seyed Hamed Mir Mohammad Ali Roudaki - Mehrdad Abedi - Iraj Pourkeivani
Impacts of Various Wind Turbine Generators on Transient Recovery Voltage in a Medium Voltage Power Network
Mostafa Heydari - Ali Asghar Razi-Kazemi
Dynamic State Estimation of Power System Using Gauss-Seidel Cubature Kalman Filter
Atiyeh Keshavarz-Mohammadiyan
طبقهبندی خطاهای ترانسفورماتورهای قدرت توسط روش خوشهبندی K-means با استفاده از آنالیز گازهای محلول در روغن
ناصر کیانی مهر - حامد زین الدینی میمند
Robust Object Detection Against Adversarial Perturbations with Gabor Filter
Mohammad Parsa Karimi - Abdollah Amirkhani - Shahriar B. Shokouhi
کنترل دوز داروی بیماران مبتلا به لوسمی با استفاده از روشی نوین بر پایه یادگیری تقویتی عمیق
مریم افخمی - امین نوری
A Novel CNN-Based FSK Demodulator With Efficient FPGA Implementation
AmirHossein Sadough - Sina Rezaeeahvanouee
Cloudy: A Pythonic Cloud Simulator
Ahmad Siavashi - Mahmoud Momtazpour
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0