0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Automated Optic Disc Segmentation in Low-Quality Retinopathy of Prematurity Retinal Images
نویسندگان :
Abolfazl Karimiyan Abdar
1
Reza AghaeiZadeh Zoroofi
2
Naser Shoeibi
3
Sare Safi
4
Alireza Ramezani
5
Homayoun Nikkhah
6
Hamid Safi
7
Mohammad Reza Ansari Astaneh
8
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه علوم پزشکی مشهد
4- دانشگاه علوم پزشکی شهید بهشتی
5- دانشگاه علوم پزشکی شهید بهشتی
6- دانشگاه علوم پزشکی شهید بهشتی
7- دانشگاه علوم پزشکی شهید بهشتی
8- دانشگاه علوم پزشکی مشهد
کلمات کلیدی :
retinopathy of prematurity،optic disc،segmentation،semi-supervise data augmentation،VGG-Unet
چکیده :
Premature infants are at risk of experiencing visual impairment primarily due to retinopathy of prematurity (ROP). Precise segmentation of the optic disc holds significant impact in determining the zone of ROP. Due to the imaging problems in premature infants and intricate nature of retinal fundus images, characterized by non-uniform illumination, low contrast between the background and the target area, the segmentation of the optic disc for infants poses a significant challenge, and there is limited literature reporting on this aspect. In addition to these challenges, the situation becomes more difficult when there are no annotations available. This paper introduces a method to tackle this issue by suggesting a semi-supervised dataset augmentation approach based on human feedback, aiming to enhance the performance of segmentation in images related to retinopathy of prematurity. VGG-Unet was set as the base model and these steps are iteratively implemented until further improvement in the result is unattainable. In this paper, two datasets were employed: (1) the publicly available Drishti dataset containing 101 fundus images from mature humans with corresponding annotations, and (2) private TMB dataset comprising 1054 images without any annotations. The VGG16-Unet model, when trained, faced challenges in effectively segmenting a specific dataset characterized by a significant distribution shift from the training dataset. Consequently, a method is required for segmenting TMB dataset without relying on expert retina specialists or annotated images. Our proposed approach aims to enhance segmentation performance by training the model on a public dataset and then applying it to the specific dataset. The first results without proposed method show the Jaccard score of 0.47 and Dice coefficient of 0.55. In proposed method after 3 epochs, we reach to the Jaccard score of 0.75 and accuracy of 0.85.
لیست مقالات
لیست مقالات بایگانی شده
Deception Attack Detection and Resilient Control in Platoon of Smart Vehicles
Hassan Mokari - Elnaz Firouzmand - Iman Sharifi - Ali Doustmohammadi
An incentive compatible reward sharing approach for shard-based blockchains
Mojdeh Hemati - Mehdi Shajari
Human detection and following by a mobile robot using YOLO structured convolutional neural network
Yasan Majidi - Amir Hossein Hassanabadi
Crypto Currency Price Prediction Using Preprocessed Scaled Inputs LSTM Model Enhanced by Improved Gray Wolf Optimization
Amir RabbaniParsa - Mahboobeh Hoshmand - Seyyed Abed Hosseini
Decoding Trait: Using Dual Transformers to Analyze Gender, Age Range and Personality
ُSaeed Asadian - Mostafa Tanasan - Bijan Vosoughi vahdat
بهبود کیفیت تصاویر حاصل از الگوریتم راداری DMAS با تخمین بهینه گذردهی الکتریکی در تصویربرداری مایکروویو برای تشخیص سرطان سینه
فاطمه سادات حسینی راد - امیررضا عطاری - سیدمحمدسعید ماجدی
انتخاب سبد سهام بهینه در بورس تهران با استفاده از تقریب تصادفی انحراف همزمان
زینب گدازگر
تحلیل عدم تعادل جریان سه فاز شبکه فشارضعیف توزیع در پی قطع هادی نول متصل به ترانسفورماتور با استفاده از مولفههای متقارن
احمد صالحی دوبخشری
Error Correction Enhancement in SCL Decoding of Polar Codes Using LSTM Network
Fatemeh Alia - Bahareh Akhbari - Mahmoud Ahmadian Attari
A High Linearity Wideband Low-Noise Amplifier Using Capacitor Cross-Coupled Common-Gate Structure
Abolfazl Rajaiyan - Fahimeh Rahimi - Mehdi Saberi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2