0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Automated Optic Disc Segmentation in Low-Quality Retinopathy of Prematurity Retinal Images
نویسندگان :
Abolfazl Karimiyan Abdar
1
Reza AghaeiZadeh Zoroofi
2
Naser Shoeibi
3
Sare Safi
4
Alireza Ramezani
5
Homayoun Nikkhah
6
Hamid Safi
7
Mohammad Reza Ansari Astaneh
8
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه علوم پزشکی مشهد
4- دانشگاه علوم پزشکی شهید بهشتی
5- دانشگاه علوم پزشکی شهید بهشتی
6- دانشگاه علوم پزشکی شهید بهشتی
7- دانشگاه علوم پزشکی شهید بهشتی
8- دانشگاه علوم پزشکی مشهد
کلمات کلیدی :
retinopathy of prematurity،optic disc،segmentation،semi-supervise data augmentation،VGG-Unet
چکیده :
Premature infants are at risk of experiencing visual impairment primarily due to retinopathy of prematurity (ROP). Precise segmentation of the optic disc holds significant impact in determining the zone of ROP. Due to the imaging problems in premature infants and intricate nature of retinal fundus images, characterized by non-uniform illumination, low contrast between the background and the target area, the segmentation of the optic disc for infants poses a significant challenge, and there is limited literature reporting on this aspect. In addition to these challenges, the situation becomes more difficult when there are no annotations available. This paper introduces a method to tackle this issue by suggesting a semi-supervised dataset augmentation approach based on human feedback, aiming to enhance the performance of segmentation in images related to retinopathy of prematurity. VGG-Unet was set as the base model and these steps are iteratively implemented until further improvement in the result is unattainable. In this paper, two datasets were employed: (1) the publicly available Drishti dataset containing 101 fundus images from mature humans with corresponding annotations, and (2) private TMB dataset comprising 1054 images without any annotations. The VGG16-Unet model, when trained, faced challenges in effectively segmenting a specific dataset characterized by a significant distribution shift from the training dataset. Consequently, a method is required for segmenting TMB dataset without relying on expert retina specialists or annotated images. Our proposed approach aims to enhance segmentation performance by training the model on a public dataset and then applying it to the specific dataset. The first results without proposed method show the Jaccard score of 0.47 and Dice coefficient of 0.55. In proposed method after 3 epochs, we reach to the Jaccard score of 0.75 and accuracy of 0.85.
لیست مقالات
لیست مقالات بایگانی شده
تحلیل حرارتی لیزر تابنده از سطح کاواک-عمودی با ساختار بازتابگر ترکیبی توری کنتراست بالا یکپارچه و بازتابشگر براگ
حسن هوشدار رستمی - وحید احمدی - سعید پهلوان
Flexibility Assessment of Virtual Power Plant with Considering Dispatchable Wind Turbine
Mahdi Rahimi - Fatemeh Jahanbani Ardakani - Ali Reza Rahimi
Human detection and following by a mobile robot using YOLO structured convolutional neural network
Yasan Majidi - Amir Hossein Hassanabadi
Implementation of an Optimized Deep Learning Model to Assess Pediatric Sleep Apnea Severity Using SpO2 Signals on Resource-Limited Microcontrollers
Erfan Mortazavi - Hanieh Mohammadi - Bahram Tarvirdizadeh - Khalil Alipour - Mohammad Ghamari
بهینهسازی نرخ امن با استفاده از انتخاب آنتن فرستنده در سیستمهای دوکارهی راداری- ارتباطی با چند ورودی - چند خروجی
نیلوفر حسینی - هنگامه کشاورز
New Single Phase Direct AC-AC Converters As A Series Static Digital Voltage Stabilizer With The Introduction Of Transformer And Transformerless Network Connection
Seyed mohsen Mortazavi - Reza Beiranvand
ارائه مبدل DC-DC غیر ایزوله هیبریدی بهره ولتاژ بالا با سوئیچ فعال سلفی
حسن زارعین - مجتبی حیدری - سیدمحمد دهقان دهنوی
Design and Implementation of a Data-Driven Controller for a Two-Wheeled Self-Balancing Robot
Mohammad Akhavan - Haniye Parvahan - Mojtaba Nouri Manzar
طراحی ماتریس باتلر 8×4 در ساختارSIW با کاهش سطح گلبرگ جانبی در باند فرکانسی 60GHz
زهرا مهرزاد - غلامرضا مرادی - ایاز قربانی
Design an Intelligent Fault Detection System for Spring-Drive Operating Mechanism of SF6 High Voltage Circuit Breaker Using ADAMS
Milad Tahvilzadeh - Mehdi Aliyari Shooredeli - Ali asghar Razi Kazemi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1