0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Automated Optic Disc Segmentation in Low-Quality Retinopathy of Prematurity Retinal Images
نویسندگان :
Abolfazl Karimiyan Abdar
1
Reza AghaeiZadeh Zoroofi
2
Naser Shoeibi
3
Sare Safi
4
Alireza Ramezani
5
Homayoun Nikkhah
6
Hamid Safi
7
Mohammad Reza Ansari Astaneh
8
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه علوم پزشکی مشهد
4- دانشگاه علوم پزشکی شهید بهشتی
5- دانشگاه علوم پزشکی شهید بهشتی
6- دانشگاه علوم پزشکی شهید بهشتی
7- دانشگاه علوم پزشکی شهید بهشتی
8- دانشگاه علوم پزشکی مشهد
کلمات کلیدی :
retinopathy of prematurity،optic disc،segmentation،semi-supervise data augmentation،VGG-Unet
چکیده :
Premature infants are at risk of experiencing visual impairment primarily due to retinopathy of prematurity (ROP). Precise segmentation of the optic disc holds significant impact in determining the zone of ROP. Due to the imaging problems in premature infants and intricate nature of retinal fundus images, characterized by non-uniform illumination, low contrast between the background and the target area, the segmentation of the optic disc for infants poses a significant challenge, and there is limited literature reporting on this aspect. In addition to these challenges, the situation becomes more difficult when there are no annotations available. This paper introduces a method to tackle this issue by suggesting a semi-supervised dataset augmentation approach based on human feedback, aiming to enhance the performance of segmentation in images related to retinopathy of prematurity. VGG-Unet was set as the base model and these steps are iteratively implemented until further improvement in the result is unattainable. In this paper, two datasets were employed: (1) the publicly available Drishti dataset containing 101 fundus images from mature humans with corresponding annotations, and (2) private TMB dataset comprising 1054 images without any annotations. The VGG16-Unet model, when trained, faced challenges in effectively segmenting a specific dataset characterized by a significant distribution shift from the training dataset. Consequently, a method is required for segmenting TMB dataset without relying on expert retina specialists or annotated images. Our proposed approach aims to enhance segmentation performance by training the model on a public dataset and then applying it to the specific dataset. The first results without proposed method show the Jaccard score of 0.47 and Dice coefficient of 0.55. In proposed method after 3 epochs, we reach to the Jaccard score of 0.75 and accuracy of 0.85.
لیست مقالات
لیست مقالات بایگانی شده
Fuzzy Fractional Order Sliding Mode Controller Design for a Wind Turbine with DFIG
Mohammad Hossein Aghaseyedabdollah - Yasin Alavian - Hadi Azmi - Alireza Yazdizadeh
طبقهبندی محیط صوتی با استفاده از ویژگی ترکیبی مبتنی بر فیلتربانک گابور
مسعود گراوانچی زاده - سپیده اختری خسروشاهی - سحر ذاکری
An Improved Real-Time Implementation of Adaptive Neuro-fuzzy Controller
Iman Gholizadeh - Haniye Raziyan - Reza Javidan
طراحی و ساخت سیستم تصویربرداری SAR دایروی موج میلیمتری
علی آقاکثیری - امیرعلی بنایی کاشانی - علی تاجیک - علیرضا کیایی - هنگامه عزیزی - مهدی عندلیبی - سامان غضنفری - محمد فخارزاده
Experimental Study on Automatically Assembling Custom Catering Packages With a 3-DOF Delta Robot Using Deep Learning Methods
Reihaneh Yourdkhani - Arash Tavoosian - Navid Asadi Khomami - Mehdi Tale Masouleh
An incentive compatible reward sharing approach for shard-based blockchains
Mojdeh Hemati - Mehdi Shajari
An Iterative Approach to Enhance the Accuracy of TDOA-Based Localization by Averaging and Reducing Noise
Reza Bahrampour - Mohammad Hossein Madani - Hossein Bahramgiri
An Ensemble Model for Sleep Stages Classification
Sahar Hassanzadeh Mostafaei - Jafar Tanha - Amir Sharafkhaneh - Zohair Hassanzadeh Mostafaei - Mohammed Hussein Ali Al-jaf - Alireza Fakhim babaei
Autonomous, Bio-inspired vision-based navigation system for indoor flying using hybrid optical flow and stereopsis methods
Masoud Mohtadifar - Hadi Seyedarabi
Lane Change Decision Making Using Deep Reinforcement Learning
Pedram Lamei - Mohammad Haeri
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0