0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Automated Optic Disc Segmentation in Low-Quality Retinopathy of Prematurity Retinal Images
نویسندگان :
Abolfazl Karimiyan Abdar
1
Reza AghaeiZadeh Zoroofi
2
Naser Shoeibi
3
Sare Safi
4
Alireza Ramezani
5
Homayoun Nikkhah
6
Hamid Safi
7
Mohammad Reza Ansari Astaneh
8
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه علوم پزشکی مشهد
4- دانشگاه علوم پزشکی شهید بهشتی
5- دانشگاه علوم پزشکی شهید بهشتی
6- دانشگاه علوم پزشکی شهید بهشتی
7- دانشگاه علوم پزشکی شهید بهشتی
8- دانشگاه علوم پزشکی مشهد
کلمات کلیدی :
retinopathy of prematurity،optic disc،segmentation،semi-supervise data augmentation،VGG-Unet
چکیده :
Premature infants are at risk of experiencing visual impairment primarily due to retinopathy of prematurity (ROP). Precise segmentation of the optic disc holds significant impact in determining the zone of ROP. Due to the imaging problems in premature infants and intricate nature of retinal fundus images, characterized by non-uniform illumination, low contrast between the background and the target area, the segmentation of the optic disc for infants poses a significant challenge, and there is limited literature reporting on this aspect. In addition to these challenges, the situation becomes more difficult when there are no annotations available. This paper introduces a method to tackle this issue by suggesting a semi-supervised dataset augmentation approach based on human feedback, aiming to enhance the performance of segmentation in images related to retinopathy of prematurity. VGG-Unet was set as the base model and these steps are iteratively implemented until further improvement in the result is unattainable. In this paper, two datasets were employed: (1) the publicly available Drishti dataset containing 101 fundus images from mature humans with corresponding annotations, and (2) private TMB dataset comprising 1054 images without any annotations. The VGG16-Unet model, when trained, faced challenges in effectively segmenting a specific dataset characterized by a significant distribution shift from the training dataset. Consequently, a method is required for segmenting TMB dataset without relying on expert retina specialists or annotated images. Our proposed approach aims to enhance segmentation performance by training the model on a public dataset and then applying it to the specific dataset. The first results without proposed method show the Jaccard score of 0.47 and Dice coefficient of 0.55. In proposed method after 3 epochs, we reach to the Jaccard score of 0.75 and accuracy of 0.85.
لیست مقالات
لیست مقالات بایگانی شده
Exploring Graph Biomarkers and Connectivity in Epilepsy Through Graph Learning
Ali Khosravipour - Sepideh Hajipour Sardouie
Efficient NVIS HF Hinged Half-Loop Vehicular Antenna Using Modal Analysis
Nasser Haghighat - Javad Nourinia - Changiz Ghobadi - Keyhan Hosseini - Farzad Alizadeh - Bahman Mohammadi
Image steganography Based on Chaos permutation, authentication and wiener deconvolution
Ali Sheidaee - Mohammad Asadpour - Leili Farzinvash
Improving the Performance of Unified Power Quality Conditioner Using Interval Type 2 Fuzzy Control
Farzad Rastegar - Zohreh Paydar
Combination of Classifiers to Detecting Grade of Gliblastoma using MRS
Roqaie Moqadam - Nazila Loghmani - Meysam Siyahmansoori - Armin Allahverdy
طراحی کنترل کننده مقاوم برای مدل غیرخطی بیماری کووید-19
آرمان مرزبان - الهام امینی بروجنی
Source Seeking Via Circular Formation of n-Nonholonomic Agents in a 2-D Environment
Milad Ghane - Mohsen Mojiri - Mohammad Ali Ghadiri-Modarres - Elaheh Zadhoosh
Unveiling Enhanced Image Quality in Sparse-View CT with OSEM- ANLM Algorithm
Sayna Jamaati - Seyed Abolfazl Hosseini - Mohammad Ghorbanzadeh - Hossein Arabi
Message Overhead Control Using P-Epidemic Routing Method in Resource-Constrained Heterogeneous DTN
Mohammad Yousef Darmani - Shiva Karimi
Robust Consensus for Descriptor Multi-agent Systems with Uncertainties in all Matrices
Abolfazl Saadati Moghadam - Ehsan Ranjbar - Amir Abolfazl Suratgar - Hajar Atrianfar
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4