0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Automated Optic Disc Segmentation in Low-Quality Retinopathy of Prematurity Retinal Images
نویسندگان :
Abolfazl Karimiyan Abdar
1
Reza AghaeiZadeh Zoroofi
2
Naser Shoeibi
3
Sare Safi
4
Alireza Ramezani
5
Homayoun Nikkhah
6
Hamid Safi
7
Mohammad Reza Ansari Astaneh
8
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه علوم پزشکی مشهد
4- دانشگاه علوم پزشکی شهید بهشتی
5- دانشگاه علوم پزشکی شهید بهشتی
6- دانشگاه علوم پزشکی شهید بهشتی
7- دانشگاه علوم پزشکی شهید بهشتی
8- دانشگاه علوم پزشکی مشهد
کلمات کلیدی :
retinopathy of prematurity،optic disc،segmentation،semi-supervise data augmentation،VGG-Unet
چکیده :
Premature infants are at risk of experiencing visual impairment primarily due to retinopathy of prematurity (ROP). Precise segmentation of the optic disc holds significant impact in determining the zone of ROP. Due to the imaging problems in premature infants and intricate nature of retinal fundus images, characterized by non-uniform illumination, low contrast between the background and the target area, the segmentation of the optic disc for infants poses a significant challenge, and there is limited literature reporting on this aspect. In addition to these challenges, the situation becomes more difficult when there are no annotations available. This paper introduces a method to tackle this issue by suggesting a semi-supervised dataset augmentation approach based on human feedback, aiming to enhance the performance of segmentation in images related to retinopathy of prematurity. VGG-Unet was set as the base model and these steps are iteratively implemented until further improvement in the result is unattainable. In this paper, two datasets were employed: (1) the publicly available Drishti dataset containing 101 fundus images from mature humans with corresponding annotations, and (2) private TMB dataset comprising 1054 images without any annotations. The VGG16-Unet model, when trained, faced challenges in effectively segmenting a specific dataset characterized by a significant distribution shift from the training dataset. Consequently, a method is required for segmenting TMB dataset without relying on expert retina specialists or annotated images. Our proposed approach aims to enhance segmentation performance by training the model on a public dataset and then applying it to the specific dataset. The first results without proposed method show the Jaccard score of 0.47 and Dice coefficient of 0.55. In proposed method after 3 epochs, we reach to the Jaccard score of 0.75 and accuracy of 0.85.
لیست مقالات
لیست مقالات بایگانی شده
LSTM and Markov-Based Mobility Prediction for Multi-access Edge Computing
Hadi Ghavaminejad - Nasser Yazdani - Golboo Rashidi
تشخیص حالت عادی و غیرعادی شبکه برق هوشمند با استفاده از شبکه عصبی مصنوعی
محمد گنج خانی - علی عباسپورطهرانی فرد - سجاد فتاحیان دهکردی - محمد غلامی
Enhancing the Incident Angle Band in Carpet Cloaking using Deep Neural Networks
Amirhossein Fallah - Leila Yousefi - Ahmad Kalhor
اندازهگیری علائم حیاتی چندین نفر با استفاده از رادار داپلر چرخان
فاطمه نقاش - محمدرضا شمسیان - فریدون بهنیا
A Bidirectional Transformerless Direct AC-AC Dynamic Voltage Restorer with Extended Compensation Range and Up/Down Capability
ُSeyed Mohsen Mortazavi - MohammadHadi Mokhtari - Mohammad Reza Zolghadri
A boosting based approach to handle imbalanced data
Sahar Hassanzadeh Mostafaei - Jafar Tanha - Negin Samadi - Soodabeh Imanzadeh - Nazila Razzaghi-Asl
A New Model of Interleaved Boost CF-CLLC Integrated Resonant Converter with Fixed-Frequency PWM Control for Renewable Energy Applications in Fuel Cell and Battery-Powered Electric Vehicles
Mina Taheri - Hossein Askariyan Abyane
A New 10 Watt Power Amplifier for GSM 900 MHz base stations with 44% Bandwidth
Marzieh Chegini - HojjatAllah Nemati - Mahmoud Kamarei
Design, Prototyping and Performance Analysis of a Barometric-Based Soft Force Sensor
Mohammad Reza SheykhAzimi - Mohammad Reza Nayeri - Mehdi Tale Masouleh - Ahmad Kalhor
Dominant Control Set Selection in Clustered Complex Brain Network
Sana Motallebi - Mohammad Javad Yazdanpanah - Abdol-Hossein Vahabie
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4