0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Automated Optic Disc Segmentation in Low-Quality Retinopathy of Prematurity Retinal Images
نویسندگان :
Abolfazl Karimiyan Abdar
1
Reza AghaeiZadeh Zoroofi
2
Naser Shoeibi
3
Sare Safi
4
Alireza Ramezani
5
Homayoun Nikkhah
6
Hamid Safi
7
Mohammad Reza Ansari Astaneh
8
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه علوم پزشکی مشهد
4- دانشگاه علوم پزشکی شهید بهشتی
5- دانشگاه علوم پزشکی شهید بهشتی
6- دانشگاه علوم پزشکی شهید بهشتی
7- دانشگاه علوم پزشکی شهید بهشتی
8- دانشگاه علوم پزشکی مشهد
کلمات کلیدی :
retinopathy of prematurity،optic disc،segmentation،semi-supervise data augmentation،VGG-Unet
چکیده :
Premature infants are at risk of experiencing visual impairment primarily due to retinopathy of prematurity (ROP). Precise segmentation of the optic disc holds significant impact in determining the zone of ROP. Due to the imaging problems in premature infants and intricate nature of retinal fundus images, characterized by non-uniform illumination, low contrast between the background and the target area, the segmentation of the optic disc for infants poses a significant challenge, and there is limited literature reporting on this aspect. In addition to these challenges, the situation becomes more difficult when there are no annotations available. This paper introduces a method to tackle this issue by suggesting a semi-supervised dataset augmentation approach based on human feedback, aiming to enhance the performance of segmentation in images related to retinopathy of prematurity. VGG-Unet was set as the base model and these steps are iteratively implemented until further improvement in the result is unattainable. In this paper, two datasets were employed: (1) the publicly available Drishti dataset containing 101 fundus images from mature humans with corresponding annotations, and (2) private TMB dataset comprising 1054 images without any annotations. The VGG16-Unet model, when trained, faced challenges in effectively segmenting a specific dataset characterized by a significant distribution shift from the training dataset. Consequently, a method is required for segmenting TMB dataset without relying on expert retina specialists or annotated images. Our proposed approach aims to enhance segmentation performance by training the model on a public dataset and then applying it to the specific dataset. The first results without proposed method show the Jaccard score of 0.47 and Dice coefficient of 0.55. In proposed method after 3 epochs, we reach to the Jaccard score of 0.75 and accuracy of 0.85.
لیست مقالات
لیست مقالات بایگانی شده
مدیریت انرژی شارژر خودروهای الکتریکی، به منظور افزایش ضریب نفوذ خودروهای الکتریکی و بهبود پروفیل ولتاژ شبکه های توزیع الکتریکی هوشمند با استفاده از شارژ خودروها در محل کار
مهدی افشار - سعید اسماعیلی جعفرآبادی
Efficient and Fast Analysis of SIW Microwave Devices Using the Multiple Multipole Technique
Ahmad Bakhtafrouz - Mohammad Moemenian - Mohsen Maddahali - Mohsen Karimian Kakolaki
Ultra-Low-Latency QCA Adder Design Using an Innovative Carry Generator
Mohammad Mahdi Cheraghi - Reza Omidi - Ali Azarpeyvand
مدل سازی دینامیکی ژنراتور سنکرون آهنربای دائم (PMSG) و تحلیل رفتار آن در شرایط عیب اتصال حلقه استاتور
مجید محرمی - منصور اوجاقی
Sliding Mode Control for a Platoon of vehicular with DoS attacks and Obstacles
Tara Rajabi Nezhad Siahpoosh - Hanie Marufkhani - Mohammad A. Khosravi
Object Detection enhancement based on Super-Resolution Mapping
Danial Abyazi - Dadfar Abyazi - Mehran Yazdi
Interval-Based Setting Approach for Distance Relays Considering Uncertainties Using Monte Carlo Simulation
Abolfazl Hadadi - Mohammad Javad Jalilian - Behrooz Vahidi - Gholam Hossein Riahy Dehkordi
Distributed Energy Management of Large-Scale Microgrids Using Predictive Control
Hamid Reza Babaei Ghazvini - Mahsa Ghavami - Mohammad Haeri
Manifold Learning-Assisted Physical Layer Key Generation for LoRaWAN: an Experimental Study
Hossein Aghajari - Hamed Bakhtiari babadegani, - Mehdi Naderi soorki - Sajad Ahmadinabi - Seyed mohsen Ahmadi
Energy Allocation Methods in NOMA Modulation Using Machine Learning Algorithms in the Presence of Jamming
Khashayar Saremi - Bahareh Akhbari
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2