0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
An Ensemble Model for Sleep Stages Classification
نویسندگان :
Sahar Hassanzadeh Mostafaei
1
Jafar Tanha
2
Amir Sharafkhaneh
3
Zohair Hassanzadeh Mostafaei
4
Mohammed Hussein Ali Al-jaf
5
Alireza Fakhim babaei
6
1- دانشگاه تبریز
2- دانشگاه تبریز
3- Baylor College of Medicine
4- دانشگاه آزاد اسلامی واحد تبریز
5- دانشگاه تبریز
6- دانشگاه تبریز
کلمات کلیدی :
Ensemble Machine Learning،Weighted Averaging،Sleep Staging،Biological Signals،Polysomnography test،Sleep Heart Health Study
چکیده :
One of the most important parts of health is the quality of sleep. Sleep disorders can be diagnosed using a standard sleep test called polysomnography. Sleep staging is a task in the field of sleep study that determines sleep cycles. In recent years, machine-learning approaches are used to classify sleep stages using biological signals derived from PSGs. In this study, we propose an ensemble machine-learning method for sleep stage classification. We use nine biological signals from the SHHS1 dataset, including two-channel EEG, two-channel EOG, ECG, EMG, abdominal, thorax, and airflow signals. Then we extract different features such as RRI and RPE from the ECG signals and frequency features from EEG signals. Finally, we develop an ensemble model using Light Gradient Boosting (LGB) and eXtreme Gradient Boosting (XGB) algorithms. In the end, we evaluate the proposed ensemble method using different metrics and compare its performance with other state-of-the-art techniques. The results of the proposed method show that it achieves an overall accuracy of 0.8951 in the five-class classification of sleep stages including Wake, N1, N2, N3, and REM.
لیست مقالات
لیست مقالات بایگانی شده
Dominant Control Set Selection in Clustered Complex Brain Network
Sana Motallebi - Mohammad Javad Yazdanpanah - Abdol-Hossein Vahabie
Area-Efficient Partially-Pipelined Architecture for Fast-SSC Decoding of Polar Codes
Mehdi Saeidi - Matin Hashemi
A Novel Generation Shedding Procedure for Power Management System in Industrial Power Plants
Erfan Asadi - Hamid Khoshkhoo - Ali Parizad
Design of Fresnel-Region Millimeter-Wave Metasurface Beam Shaper Using Deep Learning
Mohammad Hossein Koohi Ghamsari - Ehsan Imanbeygi - Mehdi Ahmadi-Boroujeni
Compact Offset-Beam Four-Layer X-Band Proximity-Coupled Array Antenna in Triangular Grid
Hossein Mardani - Javad Nourinia - Changiz Ghobadi - Muhammad Sajjad Ahmad - Bahman Mohammadi
(Room Temperature Chemiresistor H2S Gas Sensor based on ZnS/PbS Core-Shell Quantum Dots(CSQDs
Mojtaba Azimi - Ali Rostami
Multi-Octave Continuous Mode Power Amplifier with More Than 46 dBm Peak Output Power
Marzieh Chegini - Mahmoud Kamarei
Novel continuous phase DDS model for linear Chirp Signal Simulation in Pulse Compression Radar
Shahin Khakisedigh - Artin Khosravian - Mobin Jamali
Uneven Illumination Correction in Whole Slide Imaging using Pix2Pix
Sama Nemati - Hasti Shabani
Solving the inverse problem for EEG signals when learning a new motor task using GRU neural network
Milad Khosravi - Fariba Bahrami - Behzad Moshiri - Ahmad Kalhor
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1