0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
An Ensemble Model for Sleep Stages Classification
نویسندگان :
Sahar Hassanzadeh Mostafaei
1
Jafar Tanha
2
Amir Sharafkhaneh
3
Zohair Hassanzadeh Mostafaei
4
Mohammed Hussein Ali Al-jaf
5
Alireza Fakhim babaei
6
1- دانشگاه تبریز
2- دانشگاه تبریز
3- Baylor College of Medicine
4- دانشگاه آزاد اسلامی واحد تبریز
5- دانشگاه تبریز
6- دانشگاه تبریز
کلمات کلیدی :
Ensemble Machine Learning،Weighted Averaging،Sleep Staging،Biological Signals،Polysomnography test،Sleep Heart Health Study
چکیده :
One of the most important parts of health is the quality of sleep. Sleep disorders can be diagnosed using a standard sleep test called polysomnography. Sleep staging is a task in the field of sleep study that determines sleep cycles. In recent years, machine-learning approaches are used to classify sleep stages using biological signals derived from PSGs. In this study, we propose an ensemble machine-learning method for sleep stage classification. We use nine biological signals from the SHHS1 dataset, including two-channel EEG, two-channel EOG, ECG, EMG, abdominal, thorax, and airflow signals. Then we extract different features such as RRI and RPE from the ECG signals and frequency features from EEG signals. Finally, we develop an ensemble model using Light Gradient Boosting (LGB) and eXtreme Gradient Boosting (XGB) algorithms. In the end, we evaluate the proposed ensemble method using different metrics and compare its performance with other state-of-the-art techniques. The results of the proposed method show that it achieves an overall accuracy of 0.8951 in the five-class classification of sleep stages including Wake, N1, N2, N3, and REM.
لیست مقالات
لیست مقالات بایگانی شده
A Subsurface Microwave Imaging System Based on the Combination of Sub-Band-Subspace Images
Mohammad Ramezaninia - Mohammad Zoofaghari - Abolfazl Gheibollahi - Abbas Ali Heidari
Enhanced Current Commutation Drive Circuit for Hybrid DC Circuit Breaker
Alireza Jaafari - Sadegh Mohsenzade - Ali Asghar Razi-Kazemi
Differentiating Brain Connectivity Networks in ADHD and Normal Children using EEG
Roqaie Moqadam - Nazila Loghmani - Alireza Khorrami Moghaddam - Armin Allahverdy
CNTFET Technology-based adjustable Hysteresis Schmitt Trigger circuit for Energy-Efficient applications
Mohammad Reza Hosseini Varmazabadi - Ali Parhizgar - Ebrahim Abiri - Abdolreza Darabi
Second-Order Sliding Mode Design Based on the Integration of Proportional-Integral and Nonlinear $\mathcal{H}_\infty$ Controllers for Load Frequency Control
Behrad Samari - Mohammad Javad Yazdanpanah
گیت Xor/Xnor جدید با مصرف توان پایین مبتنی بر تکنولوژی اسپینترونیک
ایمان علیبیگی - محمود تابنده - سعید باقری شورکی - رامین رجایی
پیشبینی بلندمدت بار فصلی شبکه برق با استفاده از روش سری زمانی ETS
میلاد حاجی ابوالحسنی - محسن صفرزاده - زهرا عظیمی - سیدمرتضی میرباقری
Noniterative Solution of Inverse Scattering Problems Using A Priori Information
Leila Ahmadi - Amir Ahmad Shishegar
Evaluating the effect of electric vehicle charging station locations on line flows:An analytical approach
Mohammad Hasan Nikkhah - Mahdi Samadi
An LMI-based Robust Fuzzy Controller for Blood Glucose Regulation in Type 1 Diabetes
Mohammadreza Ganji Arjenaki - Mahdi Pourgholi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2