0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
An Ensemble Model for Sleep Stages Classification
نویسندگان :
Sahar Hassanzadeh Mostafaei
1
Jafar Tanha
2
Amir Sharafkhaneh
3
Zohair Hassanzadeh Mostafaei
4
Mohammed Hussein Ali Al-jaf
5
Alireza Fakhim babaei
6
1- دانشگاه تبریز
2- دانشگاه تبریز
3- Baylor College of Medicine
4- دانشگاه آزاد اسلامی واحد تبریز
5- دانشگاه تبریز
6- دانشگاه تبریز
کلمات کلیدی :
Ensemble Machine Learning،Weighted Averaging،Sleep Staging،Biological Signals،Polysomnography test،Sleep Heart Health Study
چکیده :
One of the most important parts of health is the quality of sleep. Sleep disorders can be diagnosed using a standard sleep test called polysomnography. Sleep staging is a task in the field of sleep study that determines sleep cycles. In recent years, machine-learning approaches are used to classify sleep stages using biological signals derived from PSGs. In this study, we propose an ensemble machine-learning method for sleep stage classification. We use nine biological signals from the SHHS1 dataset, including two-channel EEG, two-channel EOG, ECG, EMG, abdominal, thorax, and airflow signals. Then we extract different features such as RRI and RPE from the ECG signals and frequency features from EEG signals. Finally, we develop an ensemble model using Light Gradient Boosting (LGB) and eXtreme Gradient Boosting (XGB) algorithms. In the end, we evaluate the proposed ensemble method using different metrics and compare its performance with other state-of-the-art techniques. The results of the proposed method show that it achieves an overall accuracy of 0.8951 in the five-class classification of sleep stages including Wake, N1, N2, N3, and REM.
لیست مقالات
لیست مقالات بایگانی شده
رمز نگاری داده های EEGبا کلید ترکیبی RSA-AESبرای بالا بردن امنیت و بهینه سازی مدت زمان رمزگذاری و رمز گشایی
حجت قیمت گر - پریسا قربانی
Transmission and Energy Storage Co-Planning Expansion Considering Short-Term Uncertainties under Renewable Penetration
Mojtaba Moradi-Sepahvand - Turaj Amraee
A Bidirectional Transformerless Resonant Converter for Capacitive Power Transmission for Electric Vehicle and PowerWall Applications
Jasem Shahsevani - Reza Beiranvand
A New Approach to Determine Maximum Allowable Penetration level of LSPVPPs Considering Transient Angle Stability
Siavash Yari - Hamid Khoshkhoo
Non-homogeneous interference suppression in OFDM array radars using direct data domain approach
Sima Shariatmadari
Control Tracker Of Two Degrees Of Solar Cell Freedom Using Sliding Mode Controller
Kobra Siahi - Mohammad Reza Arvan - Vahid Behnamgol - Mahdi Mosayebi
Robust Control System Design for an Industrial Heavy Duty Gas Turbine under Network-Induced Imperfections
Nasim Ensanseft - Ali Chaibakhsh
Unsupervised Change Detection in SAR Images Using a Six-Branch CNN and Adaptive Window Approach
Abbas Kakoolvand - Maryam Imani - Hassan Ghassemian
Adaptive Control of Telerehabilitation Systems in The Framework of Multi-Agent Systems
Mohammadreza Sheykh - Heidar Ali Talebi - ّIman Sharifi
A Practical ACO-OFDM Link with an Efficient Timing Recovery Pattern
Maryam Sadeghi - Masoud Johar - Mahdi Shabany
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0