0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
An Ensemble Model for Sleep Stages Classification
نویسندگان :
Sahar Hassanzadeh Mostafaei
1
Jafar Tanha
2
Amir Sharafkhaneh
3
Zohair Hassanzadeh Mostafaei
4
Mohammed Hussein Ali Al-jaf
5
Alireza Fakhim babaei
6
1- دانشگاه تبریز
2- دانشگاه تبریز
3- Baylor College of Medicine
4- دانشگاه آزاد اسلامی واحد تبریز
5- دانشگاه تبریز
6- دانشگاه تبریز
کلمات کلیدی :
Ensemble Machine Learning،Weighted Averaging،Sleep Staging،Biological Signals،Polysomnography test،Sleep Heart Health Study
چکیده :
One of the most important parts of health is the quality of sleep. Sleep disorders can be diagnosed using a standard sleep test called polysomnography. Sleep staging is a task in the field of sleep study that determines sleep cycles. In recent years, machine-learning approaches are used to classify sleep stages using biological signals derived from PSGs. In this study, we propose an ensemble machine-learning method for sleep stage classification. We use nine biological signals from the SHHS1 dataset, including two-channel EEG, two-channel EOG, ECG, EMG, abdominal, thorax, and airflow signals. Then we extract different features such as RRI and RPE from the ECG signals and frequency features from EEG signals. Finally, we develop an ensemble model using Light Gradient Boosting (LGB) and eXtreme Gradient Boosting (XGB) algorithms. In the end, we evaluate the proposed ensemble method using different metrics and compare its performance with other state-of-the-art techniques. The results of the proposed method show that it achieves an overall accuracy of 0.8951 in the five-class classification of sleep stages including Wake, N1, N2, N3, and REM.
لیست مقالات
لیست مقالات بایگانی شده
Analysis Effect of Arrangement of Winding on the Electromagnetic Performance of HTS Squirrel Cage Induction Motor
Nima Arish - Hamid Yaghobi
Q-Learning-Oriented Distributed Energy Management of Grid-Connected Microgrid
Esmat Samadi - Ali Badri - Reza Ebrahimpour
Design of a High-Efficiency Balanced Power Amplifier with 68% Fractional Bandwidth
Fatemeh Mohabati - Marzieh Chegini - Mahmoud Kamarei
A High Gain, High IIP3, Perfect Input Matching, Programmable Gain LNA in CMOS Technology
Amirhossein Tajik - Seyedali Samareh Taherinasab - Samad Sheikhaei
گیت Xor/Xnor جدید با مصرف توان پایین مبتنی بر تکنولوژی اسپینترونیک
ایمان علیبیگی - محمود تابنده - سعید باقری شورکی - رامین رجایی
Backstepping-based Adaptive Constrained Control of Passive Torque Simulator Using Function Approximation Technique
Seyyed Amirhossein Saadat - Mohammad Mehdi Fateh - Javad Keighobadi
Human Action Recognition in Still Images Using ConViT
Seyed Rohollah Hosseyni - Sanaz Seyedin - Hassan Taheri
یک روش تشخیص و تصحیح خطا برای بلوک های داده
سعیده صادقی - محسن راجی
بررسی کنترل مغناطیسی پاسخ کایرواپتیکی ساختارهای مگنتوکایرال
کی سیاوش کیکاوسی - حمیده دشتی خویدکی - جواد احمدی شکوه - مجید رشیدی هویه
VM Placement in Accelerator-Equipped Data Centers Using Variable-Length Modified Genetic Algorithm
Aryo Yarahmadi - Mahmoud Momtazpour
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.7.4