0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Enhancing Brain Tumor Classification in OCT Images using Local Phase Quantization Features
نویسندگان :
Naeem Eslamyeh Hamedani
1
Hasti Shabani
2
1- دانشگاه شهید بهشتی
2- دانشگاه شهید بهشتی
کلمات کلیدی :
Brain tumor،local phase quantization،Optical coheence tomography،Structural features،Computer-aided diagnosis،K -means
چکیده :
Determining the boundary between healthy tissue and infiltrating tumors in brain tissue is considered one of the significant challenges for neurosurgeons. Optical coherence tomography (OCT) plays a vital role in assisting surgeons with brain tumor diagnosis. As a promising imaging modality, OCT offers fast and high-resolution imaging. However, interpreting OCT images is complex despite its advantages. Many studies have interpreted the information using intensity-based structural features. In this study, a proposed method aims to enhance diagnosis based on local phase quantization (LPQ) features. To the best of our knowledge, frequency-based features have not been utilized in any previous studies involving brain tumor classification with OCT images. Additionally, an automated K-means algorithm has been employed to quickly identify homogenous regions with high SNR in OCT images. The dataset comprises B-scans from 16 different patients, selected from regions with tumor infiltration exceeding 60% in the white matter region (WM>60%) and healthy tissues (WM0%). The results were achieved by utilizing SVM classification and employing adaptive synthetic sampling (ADASYN), coupled with grid-search cross-validation (Grid-SCV), to address data imbalance and optimize model parameters. The results, validated based on the accuracy (AC), sensitivity (SE), and specificity (SP), reached 98.53%, 98.14%, and 98.88%, respectively outperformed previous works and highlighted its potential as a computational diagnostic tool.
لیست مقالات
لیست مقالات بایگانی شده
Temporal Green's function of an RLC resonator with arbitrary time-varying capacitance using differential transition matrix
Somayeh Boshgazi - Khashayar Mehrany - Mohammad Memarian
Improving ZVS performance in phase shift LLC converter using variable magnetizing inductor for wide input/output voltage range
Saeed Ramezani darvish - Kioumars Shahriyari - Salar Sadeghian - Adib Abrishamifar
Explorable Grasp Pose Detection for Two-Finger Robot Handover
AliReza Beigy - Mehdi Tale Masouleh - Ahmad Kalhor
A New Atrial Fibrillation Detection System with Noise Cancellation and Signal Annotation
Amirali Banaei Kashani - Bardia Baraeinejad - Mohammad Fakharzadeh
Performance Analysis of the Modified Flux-Coupling-Type SFCL in VSC-HVDC System
Mohammad Khakroei - Ashkan Mirzaei Rajeooni - Mahdi Rahimi Pirbasti - Hossein Heydari
خلاصه سازی ویدیوهای کپسول آندوسکوپی با رویکرد یادگیری انتقالی
محدثه امیریان چایجان - رضا آقائی زاده ظروفی - مسعود رضا سهرابی
Energy-Efficient Residue-to-Binary Conversion Based on a Modulo-Adder-Free Architecture
Kamalaldin Mozaffari Maid - Amir Sabbagh Molahosseini
Sparsity Domain Smoothing Based Thresholding Recovery Method for OFDM Sparse Channel Estimation
Mohammad Hossein Bahonar - Reza Ghaderi Zefreh - Rouhollah Amiri
طراحی کنترلکننده استروباسکوپ زمان واقعی مبتنی بر هوش مصنوعی برای سیستم های دورانی
مهدی مظفری - سعید جعفری نسب - حامد پورکاوه - سعید شمقدری
ارائه یک مبدل DC-DC منبع امپدانسی تک سوئیچه تک هسته مغناطیسی فوق افزاینده مناسب برای استفاده در کاربرد های انرژی نو
معصومه پرستش - سجاد رستمی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3