0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Enhancing Brain Tumor Classification in OCT Images using Local Phase Quantization Features
نویسندگان :
Naeem Eslamyeh Hamedani
1
Hasti Shabani
2
1- دانشگاه شهید بهشتی
2- دانشگاه شهید بهشتی
کلمات کلیدی :
Brain tumor،local phase quantization،Optical coheence tomography،Structural features،Computer-aided diagnosis،K -means
چکیده :
Determining the boundary between healthy tissue and infiltrating tumors in brain tissue is considered one of the significant challenges for neurosurgeons. Optical coherence tomography (OCT) plays a vital role in assisting surgeons with brain tumor diagnosis. As a promising imaging modality, OCT offers fast and high-resolution imaging. However, interpreting OCT images is complex despite its advantages. Many studies have interpreted the information using intensity-based structural features. In this study, a proposed method aims to enhance diagnosis based on local phase quantization (LPQ) features. To the best of our knowledge, frequency-based features have not been utilized in any previous studies involving brain tumor classification with OCT images. Additionally, an automated K-means algorithm has been employed to quickly identify homogenous regions with high SNR in OCT images. The dataset comprises B-scans from 16 different patients, selected from regions with tumor infiltration exceeding 60% in the white matter region (WM>60%) and healthy tissues (WM0%). The results were achieved by utilizing SVM classification and employing adaptive synthetic sampling (ADASYN), coupled with grid-search cross-validation (Grid-SCV), to address data imbalance and optimize model parameters. The results, validated based on the accuracy (AC), sensitivity (SE), and specificity (SP), reached 98.53%, 98.14%, and 98.88%, respectively outperformed previous works and highlighted its potential as a computational diagnostic tool.
لیست مقالات
لیست مقالات بایگانی شده
A Low-Power Cyclic Vernier Time-to-Digital Converter for In Pixel Applications
Mohammad Hasan Pass - Sayed Masoud Sayedi - Seyed Amir Reza Ahmadi Mehr
Remote Sensing Image Registration Using Fast Visual Saliency and Improved SIFT
Fatemeh Khalili - Farbod Razzazi - Abolfazl Hosseini
طراحی و شبیه سازی مبدل کاهنده دو مرحله ای با کنترل کننده زمان روشن-خاموش تطبیقی
نوید گودرزی - حسین پاک نیت - نوید یثربی
Adaptive dynamic programming for kinematic control of 3 interconnected wheeled mobile robots
Aliakbar Ghasemzadeh - Roya Amjadifard - Ali Keymasi Khalaji
Parkinson’s Disease Classification Using Continuous Wavelet Transform and Ensemble Convolutional Neural Networks on EEG Signals
Seyed Pedram Monazami - Raheleh Davoodi
Design of Fresnel-Region Millimeter-Wave Metasurface Beam Shaper Using Deep Learning
Mohammad Hossein Koohi Ghamsari - Ehsan Imanbeygi - Mehdi Ahmadi-Boroujeni
An Autonomous Multi Agent Q-Learning Approach for Resource Allocation in D2D-Enabled Heterogeneous Networks
Pouya Akhoundzadeh - Ghasem Mirjalily - Mohammad taghi Saadeghi
A Modified Suspended Carrier Transmitter for Medical Implants
Khashayar Dehghan - Omid Shoaei - Shahin Jafarabadi Ashtiani
Investigating the Effects of Adding Distributed Generation Resources to the Distribution Networks on their Protection System Performance
Morteza Abbasghorbani - Elham Vahed
کنترل دوز داروی بیماران مبتلا به لوسمی با استفاده از روشی نوین بر پایه یادگیری تقویتی عمیق
مریم افخمی - امین نوری
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2