0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Enhancing Brain Tumor Classification in OCT Images using Local Phase Quantization Features
نویسندگان :
Naeem Eslamyeh Hamedani
1
Hasti Shabani
2
1- دانشگاه شهید بهشتی
2- دانشگاه شهید بهشتی
کلمات کلیدی :
Brain tumor،local phase quantization،Optical coheence tomography،Structural features،Computer-aided diagnosis،K -means
چکیده :
Determining the boundary between healthy tissue and infiltrating tumors in brain tissue is considered one of the significant challenges for neurosurgeons. Optical coherence tomography (OCT) plays a vital role in assisting surgeons with brain tumor diagnosis. As a promising imaging modality, OCT offers fast and high-resolution imaging. However, interpreting OCT images is complex despite its advantages. Many studies have interpreted the information using intensity-based structural features. In this study, a proposed method aims to enhance diagnosis based on local phase quantization (LPQ) features. To the best of our knowledge, frequency-based features have not been utilized in any previous studies involving brain tumor classification with OCT images. Additionally, an automated K-means algorithm has been employed to quickly identify homogenous regions with high SNR in OCT images. The dataset comprises B-scans from 16 different patients, selected from regions with tumor infiltration exceeding 60% in the white matter region (WM>60%) and healthy tissues (WM0%). The results were achieved by utilizing SVM classification and employing adaptive synthetic sampling (ADASYN), coupled with grid-search cross-validation (Grid-SCV), to address data imbalance and optimize model parameters. The results, validated based on the accuracy (AC), sensitivity (SE), and specificity (SP), reached 98.53%, 98.14%, and 98.88%, respectively outperformed previous works and highlighted its potential as a computational diagnostic tool.
لیست مقالات
لیست مقالات بایگانی شده
Perfect Tracking of a Non-minimum Phase MIMO System
Saeedreza Tofighi - Farshad Merrikh-Bayat
Constructing a security network for improving the information vulnerability of transmission systems observability
Vahid Sohrabi Tabar - Saeid Ghassemzadeh - Sajjad Tohidi - Pierluigi Siano
Machine Learning-based Fundamental Stock Prediction Using Companies’ Financial Reports
Hossein Rezaei - Kamran Abdi - Mohsen Hooshmand
پنل بازیابی: نرم افزار بازیابی سیستمهای قدرت با قیود امنیتی
سجاد نجفی روادانق - رسول اسماعیل زاده - رضا فرتاش
Current Re-use RF Receiver Front-End Topology Combinding LNA, Mixer, VCO and Frequency Divider
Ayda Zamani Ahari - Saeed Saeedi
مدل سازی ریزالور دو درجه آزادی خطی با استفاده از تابع سیمپیچی اصلاح شده
فرید توتونچیان - رضا فریادرس
A New Physical Philosophy to Model and Interpret Partial Discharge Phenomenon
Arman Vasigh Zadeh Ansari - Mahdi Vakilian
طراحی کنترلکنندهی جدولبندی بهرهی پسخورد خروجی کلیدزن مقاوم برای سیستمهای پارامتر متغیر خطی نامعین چندوجهی پیوسته-زمان
رضا یاوری - سعید شمقدری - آرش صادقزاده
GAN-Driven Image Generation for Metamaterial Absorbers Using Mean and Variance Encoding
Atefe Shahsavaripour - Mohammad Hossein Badiei - Leila Yousefi - Ahmad Kalhor
یک روش موازی برای تخمین حالت سریع در سیستم های قدرت با ابعاد بزرگ با استفاده از تکنیک جداسازی گراف
بهنام کریم سرمدی - احمد صالحی دوبخشری
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1