0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Lane Change Decision Making Using Deep Reinforcement Learning
نویسندگان :
Pedram Lamei
1
Mohammad Haeri
2
1- Sharif university of technology
2- Sharif university of technology
کلمات کلیدی :
Deep reinforcement learning،Decision making،Lane change،Autonomous vehicles،Autonomous driving
چکیده :
This paper explores the application of deep reinforcement learning for decision-making in autonomous vehicle lane-changing scenarios. Lane changes, a critical aspect of driving, pose significant challenges for autonomous systems due to complex traffic dynamics and safety constraints. The study investigates two deep reinforcement learning algorithms, deep Q-network and proximal policy optimization to train agents for efficient and safe lane changes in a stochastic highway environment. By defining a structured state, action, and reward space, the proposed methods emphasize collision avoidance, adherence to traffic norms, and travel efficiency. Simulation results reveal distinct strengths of two approaches. Deep Q-network demonstrates aggressive efficiency with higher overtakes and rapid transitions, while proximal policy optimization prioritizes safety through conservative strategies, achieving consistent maximum distances. Comparative analysis highlights the trade-offs between these methods, offering insights for developing robust autonomous driving policies. This research contributes to advancing intelligent transportation systems by addressing decision-making challenges and promoting adaptive learning for enhanced vehicle autonomy.
لیست مقالات
لیست مقالات بایگانی شده
Bilabial Consonants Recognition in CV Persian Syllable Based on Computer Vision
Melika Khajeh - Azam Bastanfard - Dariush Amirkhani
Introducing a New Phase Realization Technique for Implementation of Broadband Reflectarray Antenna
Mahmood Rafaei-booket - Seyed Mostafa Mousavi
گیمیفیکیشن یک رویکرد نوآورانه جهت کاهش مصرف برق دربخش خانگی
حمید حقرجو - مرضیه زارع زاده کللی - مهدی اشکپور مطلق
Power exchanging of a VPP with its neighboring VPPs and participating in Day-ahead and spinning reserve markets
Mohammad Fazel Dehghanniri - Masoud Ali Akbar Golkar - Farzin Ghasemi
Improved quantum secret sharing based on entanglement swapping
Mahsa Khorrampanah - Monireh Houshmand - Ali Karimi Lenji
Vehicle stability control and trajectory tracking utilizing a type-2 fuzzy controller
Mohammad Mahdavi Mazdeh - Mehdi Pourgholi - Vahid Fakhari
Improved Equivalent Input Disturbance Control of Nonlinear Aeropendulum System Using Data-Driven Approach
Mohammad Hossein Bayati - Arman Marzban - Mahsan Tavakoli-Kakhki - Ali Naseh
Identification of autism spectrum disorder based on combined analysis of structural and functional connectivity
Samane Pirmoradian - Farzaneh Shayegh - Jalal Zahabi
Selenium Doped Hafnium Disulfide Alloy for Visible Photodetection
Mohammadreza Razeghizadeh - Mohsen Mazaherifar - Mahdi Pourfath
تجزیه وابستگی با استفاده از Q-Learning محافظه کار
امیر زارعی - علیرضا خیاطیان - پیمان ستوده
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.7.4