0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Lane Change Decision Making Using Deep Reinforcement Learning
نویسندگان :
Pedram Lamei
1
Mohammad Haeri
2
1- Sharif university of technology
2- Sharif university of technology
کلمات کلیدی :
Deep reinforcement learning،Decision making،Lane change،Autonomous vehicles،Autonomous driving
چکیده :
This paper explores the application of deep reinforcement learning for decision-making in autonomous vehicle lane-changing scenarios. Lane changes, a critical aspect of driving, pose significant challenges for autonomous systems due to complex traffic dynamics and safety constraints. The study investigates two deep reinforcement learning algorithms, deep Q-network and proximal policy optimization to train agents for efficient and safe lane changes in a stochastic highway environment. By defining a structured state, action, and reward space, the proposed methods emphasize collision avoidance, adherence to traffic norms, and travel efficiency. Simulation results reveal distinct strengths of two approaches. Deep Q-network demonstrates aggressive efficiency with higher overtakes and rapid transitions, while proximal policy optimization prioritizes safety through conservative strategies, achieving consistent maximum distances. Comparative analysis highlights the trade-offs between these methods, offering insights for developing robust autonomous driving policies. This research contributes to advancing intelligent transportation systems by addressing decision-making challenges and promoting adaptive learning for enhanced vehicle autonomy.
لیست مقالات
لیست مقالات بایگانی شده
طراحی و شبیه سازی یک فراسطح بازتابی با قابلیت تحقق الگوی تشعشعی هم شار با قطبش های خطی و دایروی در باند X مناسب برای ماهواره سنجشی
مجید کریمی پور - ایمان آریانیان
مدلسازی ابرشبکههای AlxGa1-xAs)m/(GaAs)n) با استفاده از روش Empirical Tight-Binding
متینه سادات حسینی قیداری - وحیدرضا یزدان پناه
Robust Wireless Power Transfer by Self-Oscillating Controlled Inverter and Double-D Pads
Alireza Eikani - Mohammad Amirkhani - Hossein Jafari - Hesamodin Abdoli - Sadegh Vaez-Zadeh - Ghasem Rezazadeh
Soft Decision Adaptive Deep Learning Detection for Enhanced Massive MIMO Performance
Farnaz Sedaghati - Mojtaba Amiri - Ali Olfat
CatBoost Classifier For DDoS Detection In SDN Using Ryu Controller
Yazdan etdali Mohamadreza Noorifard
Improving Artificial Neural Network Performance Using Hybrid Activation Function
Morteza Taheri - Sajad Haghzad Klidbary
An Iterative Approach to Enhance the Accuracy of TDOA-Based Localization by Averaging and Reducing Noise
Reza Bahrampour - Mohammad Hossein Madani - Hossein Bahramgiri
Reactive Power Management of PV Systems by Distributed Cooperative Control in Low Voltage Distribution Networks
Saeed Mahdavian Rostami - Mohsen Hamzeh
Model Predictive Control for a 3-DoF Suspended Cable Robot Based on Laguerre Functions
Shiva Khoshkam - Mohammad A. Khosravi - Rasul FesharakiFard
Autonomous Guidance and Control of Satellite Formation Flying Based on Q-Learning with Collision Avoidance Capability
Hamid Mohsennezhad - Mohammadrasoul Kankashvar - Hossein Bolandi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3