0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Lane Change Decision Making Using Deep Reinforcement Learning
نویسندگان :
Pedram Lamei
1
Mohammad Haeri
2
1- Sharif university of technology
2- Sharif university of technology
کلمات کلیدی :
Deep reinforcement learning،Decision making،Lane change،Autonomous vehicles،Autonomous driving
چکیده :
This paper explores the application of deep reinforcement learning for decision-making in autonomous vehicle lane-changing scenarios. Lane changes, a critical aspect of driving, pose significant challenges for autonomous systems due to complex traffic dynamics and safety constraints. The study investigates two deep reinforcement learning algorithms, deep Q-network and proximal policy optimization to train agents for efficient and safe lane changes in a stochastic highway environment. By defining a structured state, action, and reward space, the proposed methods emphasize collision avoidance, adherence to traffic norms, and travel efficiency. Simulation results reveal distinct strengths of two approaches. Deep Q-network demonstrates aggressive efficiency with higher overtakes and rapid transitions, while proximal policy optimization prioritizes safety through conservative strategies, achieving consistent maximum distances. Comparative analysis highlights the trade-offs between these methods, offering insights for developing robust autonomous driving policies. This research contributes to advancing intelligent transportation systems by addressing decision-making challenges and promoting adaptive learning for enhanced vehicle autonomy.
لیست مقالات
لیست مقالات بایگانی شده
Optimal Design of a Synchronous Reluctance Motor Using BioGeography-Based Optimization
Tohid Sharifi - Mojtaba Mirsalim
مدل سازی دینامیکی ژنراتور سنکرون آهنربای دائم (PMSG) و تحلیل رفتار آن در شرایط عیب اتصال حلقه استاتور
مجید محرمی - منصور اوجاقی
Hybrid PI-SOSM Controller for Battery and Supercapacitor Integration in Electric Vehicles
Maede Azimi - Ghasem Rezazadeh - Mohsen Hamzeh
A Design Technique For Linear Desensitized LNAs
Masoumeh Sabzi - Mahmoud Kamarei - Yann Mahe - Tchanguiz Razban-Haghighi
بازآرایی پویا شبکه توزیع با حضور ایستگاه شارژ خودرو الکتریکی به کمک یادگیری تقویتی
محمدامین ساعدی - صالح رازینی - محمدامین قاسمی
A Novel CNN-Based FSK Demodulator With Efficient FPGA Implementation
AmirHossein Sadough - Sina Rezaeeahvanouee
A New 10 Watt Power Amplifier for GSM 900 MHz base stations with 44% Bandwidth
Marzieh Chegini - HojjatAllah Nemati - Mahmoud Kamarei
VM Placement in Accelerator-Equipped Data Centers Using Variable-Length Modified Genetic Algorithm
Aryo Yarahmadi - Mahmoud Momtazpour
Stochastic model predictive control based on online learning for a class of nonlinear constrained systems
Mahdi Mansoury - Mohammad Ali Badamchizadeh - Hamed Kharrati
Interval-Based Setting Approach for Distance Relays Considering Uncertainties Using Monte Carlo Simulation
Abolfazl Hadadi - Mohammad Javad Jalilian - Behrooz Vahidi - Gholam Hossein Riahy Dehkordi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2