0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Lane Change Decision Making Using Deep Reinforcement Learning
نویسندگان :
Pedram Lamei
1
Mohammad Haeri
2
1- Sharif university of technology
2- Sharif university of technology
کلمات کلیدی :
Deep reinforcement learning،Decision making،Lane change،Autonomous vehicles،Autonomous driving
چکیده :
This paper explores the application of deep reinforcement learning for decision-making in autonomous vehicle lane-changing scenarios. Lane changes, a critical aspect of driving, pose significant challenges for autonomous systems due to complex traffic dynamics and safety constraints. The study investigates two deep reinforcement learning algorithms, deep Q-network and proximal policy optimization to train agents for efficient and safe lane changes in a stochastic highway environment. By defining a structured state, action, and reward space, the proposed methods emphasize collision avoidance, adherence to traffic norms, and travel efficiency. Simulation results reveal distinct strengths of two approaches. Deep Q-network demonstrates aggressive efficiency with higher overtakes and rapid transitions, while proximal policy optimization prioritizes safety through conservative strategies, achieving consistent maximum distances. Comparative analysis highlights the trade-offs between these methods, offering insights for developing robust autonomous driving policies. This research contributes to advancing intelligent transportation systems by addressing decision-making challenges and promoting adaptive learning for enhanced vehicle autonomy.
لیست مقالات
لیست مقالات بایگانی شده
Error Correction Enhancement in SCL Decoding of Polar Codes Using LSTM Network
Fatemeh Alia - Bahareh Akhbari - Mahmoud Ahmadian Attari
A 20W High Gain Power Amplifier
Hamid Taleb-Alhagh-Nia - Reza Rezaei Siahrood - Hamed Sajadinia
Numerical investigation of gain switching in Fano semiconductor lasers
Arash Hodaie - Hassan Kaatuzian - Aref Rasoulzadeh Zali
Switchable Chain Configurable RO PUF for Enhancing Hardware Security of IoT Devices
Niloufar Sayadi - Mohammad Eshghi
CNN-LSTM model for Confusion Classification; using Single-Channel EEG
Amirhossein Aran - Zahra Ghanbari - Mohammad Hassan Moradi
Improving Power Grid Operational Resilience During A Tornado Disaster
Mohammadali Nazari - Navid Rezaei - Hassan Bevrani
Design and Application of a Five-Level Cross-Switched Inverter in Low-Voltage Distribution System Voltage Compensation
Mohammad Farhadi-kangarlu - Yousef Neyshabouri - Asra Sotudeh
حل مسئله مجموعه مستقل d-فاصله با رویکرد CombOpt Zero
فاطمه نیکبخت نصرآبادی - حسین فلسفین - مهران صفایانی
Temporal Green's function of an RLC resonator with arbitrary time-varying capacitance using differential transition matrix
Somayeh Boshgazi - Khashayar Mehrany - Mohammad Memarian
Revolutionizing Energy Efficiency: A Case Study on Self-supply of Electrical Energy in the Mobarake Steel Industry
Mahdi Shadi - Seyed Mohammad Shobeiry - Mohammad Sadegh Ghazizadeh - Hassan Mardani
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2