0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Lane Change Decision Making Using Deep Reinforcement Learning
نویسندگان :
Pedram Lamei
1
Mohammad Haeri
2
1- Sharif university of technology
2- Sharif university of technology
کلمات کلیدی :
Deep reinforcement learning،Decision making،Lane change،Autonomous vehicles،Autonomous driving
چکیده :
This paper explores the application of deep reinforcement learning for decision-making in autonomous vehicle lane-changing scenarios. Lane changes, a critical aspect of driving, pose significant challenges for autonomous systems due to complex traffic dynamics and safety constraints. The study investigates two deep reinforcement learning algorithms, deep Q-network and proximal policy optimization to train agents for efficient and safe lane changes in a stochastic highway environment. By defining a structured state, action, and reward space, the proposed methods emphasize collision avoidance, adherence to traffic norms, and travel efficiency. Simulation results reveal distinct strengths of two approaches. Deep Q-network demonstrates aggressive efficiency with higher overtakes and rapid transitions, while proximal policy optimization prioritizes safety through conservative strategies, achieving consistent maximum distances. Comparative analysis highlights the trade-offs between these methods, offering insights for developing robust autonomous driving policies. This research contributes to advancing intelligent transportation systems by addressing decision-making challenges and promoting adaptive learning for enhanced vehicle autonomy.
لیست مقالات
لیست مقالات بایگانی شده
A New Method Based on Emprical Wavelet Transform in Order to Detect Current Transformer Saturation in Distance Relay
Amir Ali Ahmadi Pishkohi - Seyed Amir Hosseini - Behrooz Taheri
Weak GPS Signal Acquisition Based on Wavelet Transform Denoising and Deep Learning Method
Navid Moradi - Mohsen Nezhadshahbodaghi - Mohammad-Reza Mosavi
Lane Change Decision Making Using Deep Reinforcement Learning
Pedram Lamei - Mohammad Haeri
A Novel Generation Shedding Procedure for Power Management System in Industrial Power Plants
Erfan Asadi - Hamid Khoshkhoo - Ali Parizad
Analytical Model for Estimating the Range of Troposcatter Active Radar
Mahdi Shiri - Mohammadreza Edalatzadeh
A Barrier Function Based Feedback Linearization Method for On-line Output Tracking Control of Non-minimum Phase Systems
Fatemeh Jahangiri - Ali Talebi - Mohammad Bagher Menhaj
A Non-Isolated Extendable Common Grounded DC-DC Boost Converter for DC-microgrid Applications
Saed Mahmoud alilou - Ali Nadermohammadi - Mohammad Maalandish - Seyed hossein Hosseini - Kazem Zare - Mehdi Abapour
Melanoma Detection Using Multi-Color LBP-FPl and Optimized VGG16
Vida Esmaeili - Mahmood Mohassel Feghhi
Improving Spiking Neural Network Performance Using Astrocyte Feedback for Farsi Digit Recognition
Malihe Nazari - Fariba Bahrami - Mohammad Javad Yazdanpanah
تخمین افسردگی مبتنی بر صوت با استفاده از بانک فیلتر و شبکه عصبی ResNet
علی نیک خراسانی - محمدرضا اکبرزاده توتونچی - مجید غیورمبرهن
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4