0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Lane Change Decision Making Using Deep Reinforcement Learning
نویسندگان :
Pedram Lamei
1
Mohammad Haeri
2
1- Sharif university of technology
2- Sharif university of technology
کلمات کلیدی :
Deep reinforcement learning،Decision making،Lane change،Autonomous vehicles،Autonomous driving
چکیده :
This paper explores the application of deep reinforcement learning for decision-making in autonomous vehicle lane-changing scenarios. Lane changes, a critical aspect of driving, pose significant challenges for autonomous systems due to complex traffic dynamics and safety constraints. The study investigates two deep reinforcement learning algorithms, deep Q-network and proximal policy optimization to train agents for efficient and safe lane changes in a stochastic highway environment. By defining a structured state, action, and reward space, the proposed methods emphasize collision avoidance, adherence to traffic norms, and travel efficiency. Simulation results reveal distinct strengths of two approaches. Deep Q-network demonstrates aggressive efficiency with higher overtakes and rapid transitions, while proximal policy optimization prioritizes safety through conservative strategies, achieving consistent maximum distances. Comparative analysis highlights the trade-offs between these methods, offering insights for developing robust autonomous driving policies. This research contributes to advancing intelligent transportation systems by addressing decision-making challenges and promoting adaptive learning for enhanced vehicle autonomy.
لیست مقالات
لیست مقالات بایگانی شده
Safe Cooperative Control of Non-Holonomic Mobile Manipulators
Zahra Kashi - Nargess Sadeghzadeh-Nokhodberiz
Adaptive synchronous switching of uncompensated open transmission lines Realizing the line’s Parameters, and the pre-arcing interval
Alireza Karimonnafs - Mehdi Vakilian
A Dual-Band LPDA Antenna Based on MXene for High-Band 5G Application
Javad Shokri seyyedi - Reza Sarraf Shirazi - Gholamreza Moradi
A novel CMRR Enhancement technique in fully-differential Class-AB OTAs
Amirhossein Sabour - Mahsa Ramezan Pour - Mohammad Yavari
Low-Power Fano Resonance-Based MIM Plasmonic Switch Using Kerr-Type Nonlinear Material
Yousef Karimi - Hassan Kaatuzian
امنیت سایبری در مواجه با تزریق اطلاعات نادرست به سیستم قدرت هوشمند و ارائه راهکار مقابله
مهدی جمشیدی آفارانی - مهرداد عابدی
Computational Insights into the Superior Performance of ψ-Graphene in Li-S Batteries: A DFT Study
Donna Rashidi - Maryam Abbasi - Leila Sadeghbeigy - Matin Bakhtavari - Ebrahim Nadimi
High-Performance Biosensor Based on SRR for Early Breast Cancer Detection
Hasti Enayattarighehkari - Sina Aramtan - Gholamreza Moradi - Farhad Azadi Namin
A 400 ps Input Time Range 2× Time Amplifier Using Time-to-Current Compensation Technique
Mohammad Amin Yaldagard - Hossein Shamsi
Design and Analysis of A Non-Isolated High gain DC-DC Converter with Single Power Switch
Amirreza Bahadori - Seyed Hossein Hosseini - Ebrahim Babaei - Saeed Danyali
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2