0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Lane Change Decision Making Using Deep Reinforcement Learning
نویسندگان :
Pedram Lamei
1
Mohammad Haeri
2
1- Sharif university of technology
2- Sharif university of technology
کلمات کلیدی :
Deep reinforcement learning،Decision making،Lane change،Autonomous vehicles،Autonomous driving
چکیده :
This paper explores the application of deep reinforcement learning for decision-making in autonomous vehicle lane-changing scenarios. Lane changes, a critical aspect of driving, pose significant challenges for autonomous systems due to complex traffic dynamics and safety constraints. The study investigates two deep reinforcement learning algorithms, deep Q-network and proximal policy optimization to train agents for efficient and safe lane changes in a stochastic highway environment. By defining a structured state, action, and reward space, the proposed methods emphasize collision avoidance, adherence to traffic norms, and travel efficiency. Simulation results reveal distinct strengths of two approaches. Deep Q-network demonstrates aggressive efficiency with higher overtakes and rapid transitions, while proximal policy optimization prioritizes safety through conservative strategies, achieving consistent maximum distances. Comparative analysis highlights the trade-offs between these methods, offering insights for developing robust autonomous driving policies. This research contributes to advancing intelligent transportation systems by addressing decision-making challenges and promoting adaptive learning for enhanced vehicle autonomy.
لیست مقالات
لیست مقالات بایگانی شده
Design and Implementation of a Modular ROS-based Mobile Robot With Hierarchical Control
Erfan Riazati - Arian Hajizadeh - Seyed Majid Esmailzadeh
High-Precision Simple-Expandable Loser Take All (LTA) Circuit
Hossein Yaghoobzade Shadmehri - Ehsan Rahiminejad - Mohaddeseh Ghaeni
Real-Time Prediction of Lower Limb AngularTrajectories Using an Optimized LSTM Model withMarkerless Motion Capture
Amirhossein Jafari - Hamed Jalaly Bidgoly
Flexible Generation Expansion Planning Considering Representative Days of Load and Renewable Variations
Peyman Amirian - Zeinab Maleki - Mohammad-Amin Pourmoosavi - Turaj Amraee
Manifold Learning-Assisted Physical Layer Key Generation for LoRaWAN: an Experimental Study
Hossein Aghajari - Hamed Bakhtiari babadegani, - Mehdi Naderi soorki - Sajad Ahmadinabi - Seyed mohsen Ahmadi
طراحی کنترلکننده مد لغزشی دینامیک برای سیستم تعلیق فعال غیر خطی با عملگر غیرایدهآل
مونا عظیمی - الهه مرادی
Agglomerative Hierarchical Clustering Based on Q-learning for D2D Communication in Public Safety Communication Networks
Sahel Alipour - Mohammad Mansour Kesargheh - Abdulhamid Zahedi - Ghasem Mirjalily - Jamshid Abouei
A Robust Hysteresis-Feedforward Control Approach with High Flexibility for a Single-Inductor Multi-Port DC-DC Converter
Aran Shoaei - Karim Abbaszadeh - Hesamodin Allahyari
A Novel HVDC Transmission System Based on Z-Source Converter
Mehdi Zareian Jahromi - Mohammadreza Mousavikhademi - Ebrahim Kazemi
Outage Analysis of Distributed Relaying NOMA in Cognitive Radio Networks
Zahra Doorbash - Ali Jamshidi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4