0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Denoising of the Diffusion Tensor Imaging Data Using k-Space Redundancy
نویسندگان :
Khashayar Esmaeilzadeh
1
Farzaneh Keyvanfard
2
Abbas Nasiraei Moghaddam
3
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه خواجه نصیرالدین طوسی
3- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
diffusion tensor imaging،denoising filter،spatial frequency domain،fractional anisotropy،cartesian filling
چکیده :
Diffusion tensor imaging is a highly capable, yet noise-sensitive method for obtaining the brain's white matter structure. It comprises repeated acquisitions, each weighted by a diffusion gradient in one specific direction. The acquired data, therefore, has a large amount of redundancy that can be used for its efficient denoising. In this paper, we estimated the pattern for areas in the k-space most affected by the directional diffusion gradient. This pattern was then used for filtrating the acquired data for each direction. In particular, the areas minimally affected by diffusion gradients were replaced by the k-space data that was averaged over all directional acquisitions. The central idea for this filtering is the geometrical constraints on the diffusion caused by fiber orientations. This denoising approach was examined through the resulting reconstructed diffusion images as well as consequent fractional anisotropy (FA) maps, in terms of Signal-to-Noise Ratio and Contrast-to-Noise Ratio (CNR) obtained for different subsampling levels. The results demonstrated a 25.58% increase in SNR and a 27.86% increase in CNR for the FA map when our filter was applied during subsampling (44.44% of each k-space) in the datasets. Additionally, the qualitative assessment showed our filter resulted in a better representation of tracts in the FA map derived from the fully sampled k-spaces.
لیست مقالات
لیست مقالات بایگانی شده
Recurrence Quantification and Machine Learning: A Novel Approach for Parkinson’s Disease Diagnosis from EEG Signals
Asghar Zarei - Alireza Talesh Jafadideh
FGM Copula based Analysis of Outage Probability for Wireless Three-User Multiple Access Channel with Correlated Channel Coefficients
Mona Sadat Mohsenzadeh - Ghosheh Abed Hodtani
Flexibility Assessment of Virtual Power Plant with Considering Dispatchable Wind Turbine
Mahdi Rahimi - Fatemeh Jahanbani Ardakani - Ali Reza Rahimi
A Mathematical 3D Solution to Efficiently Locate Drones in 5G Wireless Networks
Mina Taghavi - Jamshid Abouei
Robust IDA-PBC for a Spatial Underactuated Cable Driven Robot with Bounded Inputs
Mohammad Reza Jafari Harandi - S. Ahmad Khalilpour - Hamid Taghirad
بهبود کیفیت تصاویر حاصل از الگوریتم راداری DMAS با تخمین بهینه گذردهی الکتریکی در تصویربرداری مایکروویو برای تشخیص سرطان سینه
فاطمه سادات حسینی راد - امیررضا عطاری - سیدمحمدسعید ماجدی
Giant Optical Nonreciprocity with Magnetized Epsilon-Near-Zero Materials
Zahra Chamani - Abolghasem Zeidaabadi Nezhad - Mahyar Dehdast - Zaker Hossein Firouzeh
Outage Analysis of Distributed Relaying NOMA in Cognitive Radio Networks
Zahra Doorbash - Ali Jamshidi
Contextual and Spectral Feature Fusion Using Local Binary Graph for Hyperspectral Images Classification
Zahra Farmahini Farahani - Hassan Ghassemian - Maryam Imani
طراحی کنترل کننده امن سیستمهای غیرخطی با استفاده از یادگیری تقویتی و بهینه سازی مجموع مربعات
حسین قلی زاده - احسان رضوی - سجاد پاک خصال - سعید شمقدری
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.7.4