0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Denoising of the Diffusion Tensor Imaging Data Using k-Space Redundancy
نویسندگان :
Khashayar Esmaeilzadeh
1
Farzaneh Keyvanfard
2
Abbas Nasiraei Moghaddam
3
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه خواجه نصیرالدین طوسی
3- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
diffusion tensor imaging،denoising filter،spatial frequency domain،fractional anisotropy،cartesian filling
چکیده :
Diffusion tensor imaging is a highly capable, yet noise-sensitive method for obtaining the brain's white matter structure. It comprises repeated acquisitions, each weighted by a diffusion gradient in one specific direction. The acquired data, therefore, has a large amount of redundancy that can be used for its efficient denoising. In this paper, we estimated the pattern for areas in the k-space most affected by the directional diffusion gradient. This pattern was then used for filtrating the acquired data for each direction. In particular, the areas minimally affected by diffusion gradients were replaced by the k-space data that was averaged over all directional acquisitions. The central idea for this filtering is the geometrical constraints on the diffusion caused by fiber orientations. This denoising approach was examined through the resulting reconstructed diffusion images as well as consequent fractional anisotropy (FA) maps, in terms of Signal-to-Noise Ratio and Contrast-to-Noise Ratio (CNR) obtained for different subsampling levels. The results demonstrated a 25.58% increase in SNR and a 27.86% increase in CNR for the FA map when our filter was applied during subsampling (44.44% of each k-space) in the datasets. Additionally, the qualitative assessment showed our filter resulted in a better representation of tracts in the FA map derived from the fully sampled k-spaces.
لیست مقالات
لیست مقالات بایگانی شده
Smart EV Charging in Residential Power Grids Considering Users’ Preferences
Mahya Shahshahani - Ali Moradi Amani - Mahdi Jalili
Design Comparison of BLDC and SR Motor Drives for Range Hood Applications
Aghil Ghaheri - Reza Naghash - Akbar Mohammadi Ajamloo - Ebrahim Afjei
طراحی و تحلیل یک حسگر پلاسمونیک ضریب شکست بر پایه فیبر بلور فتونی با هدف بهبود مشخصات فنی
علی یاوری - حسن کاتوزیان - سارا قلی نژاد شفق
بهبود تخصیص منابع لبهها در شبکه LTE مبتنی بر محاسبات لبه با رویکرد تعادل میان تاخیر و قابلیت اطمینان
ایمان عظیمی احمدآبادی - علی اکبر تدین تفت
تخمین نرختنفس با استفاده از ترکیب ویژگیهای سیگنال فوتوپلتیسموگرافی و مدل FCM-ANFIS
علیرضا باغبانی - سیده فاطمه مولایی زاده
A New High Step-Up Quasi Z-Source DC-DC Converter Using Buffer and Switched Capacitor Techniques
Erfan Meshkizadeh - Ebrahim Afjei - Morteza Kheradmandi
Design and Simulation of Ultra High power X-band Rotary Joint with a Matching Choke
Mohammad Bod - Seyed mohammad Hashemi
Revealing Shadows: Low-Light Image Enhancement Using Self-Calibrated Illumination
Farzaneh Koohestani - Nader Karimi - Shadrokh Samavi
Soft Decision Adaptive Deep Learning Detection for Enhanced Massive MIMO Performance
Farnaz Sedaghati - Mojtaba Amiri - Ali Olfat
A New Protocol to Improve Effect of repetitive Transcranial Magnetic Stimulation in Treatment of Alzheimer's Disease
Ali Abedi - Gholamreza Moradi - Reza Sarraf Shirazi - Mehran Jahed
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2