0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Denoising of the Diffusion Tensor Imaging Data Using k-Space Redundancy
نویسندگان :
Khashayar Esmaeilzadeh
1
Farzaneh Keyvanfard
2
Abbas Nasiraei Moghaddam
3
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه خواجه نصیرالدین طوسی
3- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
diffusion tensor imaging،denoising filter،spatial frequency domain،fractional anisotropy،cartesian filling
چکیده :
Diffusion tensor imaging is a highly capable, yet noise-sensitive method for obtaining the brain's white matter structure. It comprises repeated acquisitions, each weighted by a diffusion gradient in one specific direction. The acquired data, therefore, has a large amount of redundancy that can be used for its efficient denoising. In this paper, we estimated the pattern for areas in the k-space most affected by the directional diffusion gradient. This pattern was then used for filtrating the acquired data for each direction. In particular, the areas minimally affected by diffusion gradients were replaced by the k-space data that was averaged over all directional acquisitions. The central idea for this filtering is the geometrical constraints on the diffusion caused by fiber orientations. This denoising approach was examined through the resulting reconstructed diffusion images as well as consequent fractional anisotropy (FA) maps, in terms of Signal-to-Noise Ratio and Contrast-to-Noise Ratio (CNR) obtained for different subsampling levels. The results demonstrated a 25.58% increase in SNR and a 27.86% increase in CNR for the FA map when our filter was applied during subsampling (44.44% of each k-space) in the datasets. Additionally, the qualitative assessment showed our filter resulted in a better representation of tracts in the FA map derived from the fully sampled k-spaces.
لیست مقالات
لیست مقالات بایگانی شده
Instantaneous Blind Audio Source Separation Using Characteristic Function of Heavy-Tailed Distributions
Kamran Rajabi - Mohammadreza Hassannejad Bibalan - Neda Faraji
An Open-Loop Time Amplifier With Zero-Gain Delay in Output for Coarse-Fine Time to Digital Converters
Seyyed Morteza Golzan - Jafar Sobhi - Ziaddin Daie Koozehkanani
Image denoising using convolutional neural network
Behnam Latifi - Abolghasem Raie
Low VHF Wire Antenna with Low-cost and Wideband Properties
Mahdieh Bozorgi - Mahmood Rafaei-booket - Sina Hasibi-Taheri
Control of vienna rectifier with Discontinuous space vector modulation based on circuit level decoupling
Ali Roshandel - Mohammad Roshandel - Ebrahim Afjei
بهبود تابآوری شبکههای توزیع سنتی در مرحله پیش از حادثه به کمک بازآرایی با الگوریتم ارگانیسم همزیستی
حسین بایسته - رضا شیردره - محمد احمدوند
Design and Practical Implementation of Internal Model Controller for Temperature Regulation of Thermoelectric Cell
Parastoo Kamali - Sanaz Iman Shayan - Mahshid Mousapour - Fatemeh Abdolsamadi - Salar Zeinali - Sadra Rafatnia
Virtual power plant participation in day-ahead and futures markets with a deep learning approach
Farzin Ghasemi Olanlari - Mohammad Fazel Dehghanniri - Turaj Amraee
Strategic Offering of a Virtual Power Plant in Energy Markets Under Contingency Conditions: A Hybrid Stochastic Robust Optimization Approach
Elahe Ghanaee - Morteza Rahimiyan
On the Interaction Between Meteorological Conditions and Performance Optimization in MISO Free-Space Optical Communication
Meysam Ghanbari - Mahdis Saghaee Jahed - Seyed Mohammad Sajad Sadough
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2