0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Denoising of the Diffusion Tensor Imaging Data Using k-Space Redundancy
نویسندگان :
Khashayar Esmaeilzadeh
1
Farzaneh Keyvanfard
2
Abbas Nasiraei Moghaddam
3
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه خواجه نصیرالدین طوسی
3- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
diffusion tensor imaging،denoising filter،spatial frequency domain،fractional anisotropy،cartesian filling
چکیده :
Diffusion tensor imaging is a highly capable, yet noise-sensitive method for obtaining the brain's white matter structure. It comprises repeated acquisitions, each weighted by a diffusion gradient in one specific direction. The acquired data, therefore, has a large amount of redundancy that can be used for its efficient denoising. In this paper, we estimated the pattern for areas in the k-space most affected by the directional diffusion gradient. This pattern was then used for filtrating the acquired data for each direction. In particular, the areas minimally affected by diffusion gradients were replaced by the k-space data that was averaged over all directional acquisitions. The central idea for this filtering is the geometrical constraints on the diffusion caused by fiber orientations. This denoising approach was examined through the resulting reconstructed diffusion images as well as consequent fractional anisotropy (FA) maps, in terms of Signal-to-Noise Ratio and Contrast-to-Noise Ratio (CNR) obtained for different subsampling levels. The results demonstrated a 25.58% increase in SNR and a 27.86% increase in CNR for the FA map when our filter was applied during subsampling (44.44% of each k-space) in the datasets. Additionally, the qualitative assessment showed our filter resulted in a better representation of tracts in the FA map derived from the fully sampled k-spaces.
لیست مقالات
لیست مقالات بایگانی شده
Design of an Optical Current Transformer for High-Voltage Gas-Insulated Switchgear-Part I: Focus on Optical Sensor Design
Reza Babaei - Asghar Akbari - Arash Moradi
Image-Based Self-Localization Using Differential Observation Angle Based on Real-World Features
Seyed Mohammad Bagher Seyedin - Mahdi Goodarzi - Fereidoon Behnia
Risk-based Expansion planning of Active Distribution Networks in the Presence of Electric Vehicles to improve the Reliability
Ali Razzaghi
طراحی آنتن سرآتش پهن باند مبتنی بر پلاسمون پلاریتونهای سطحی جعلی
فرشاد ارغنده - بیژن عباسی آرند - مریم حصاری شرمه
Φ-OTDR Event Classification Using Machine Learning and Optical Signal Processing
Amir Babaoughli - Tohid Alizadeh - Seyed Sadra Kashef
Forged Channel: A Breakthrough Approach for Accurate Parkinson's Disease Classification using Leave-One-Subject-Out Cross-Validation
SeyedAmirReza Hamidi - Kamal Mohamed-Pour - Mohammad Yousefi
طراحی کنترلکننده استروباسکوپ زمان واقعی مبتنی بر هوش مصنوعی برای سیستم های دورانی
مهدی مظفری - سعید جعفری نسب - حامد پورکاوه - سعید شمقدری
Efficient Full Adders for Approximate Arithmetic Units in the Image Processing Applications
Bahram Rashidi
Optimal Design of a Synchronous Reluctance Motor Using BioGeography-Based Optimization
Tohid Sharifi - Mojtaba Mirsalim
تحلیل عدم تعادل جریان سه فاز شبکه فشارضعیف توزیع در پی قطع هادی نول متصل به ترانسفورماتور با استفاده از مولفههای متقارن
احمد صالحی دوبخشری
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4