0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Multi-agent H-Learning Based Cooperative Spectrum Sensing for Cognitive Radio Networks
نویسندگان :
Elaheh Karimpour Fard
1
Mahdi Nouri
2
Hamid Behroozi
3
Sima Sobhi-Givi
4
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
3- دانشگاه صنعتی شریف
4- دانشگاه ارومیه
کلمات کلیدی :
Cognitive radio network،Cooperative spectrum sensing،Massive MIMO،Multi-agent reinforcement learning،Model-based H-learning،Gaussian kernel reward function
چکیده :
Fast and accurate methods for spectrum sensing (SS) are the key elements in cognitive radio networks (CRNs) that achieve high SS. This paper proposes a reinforcement learning (RL) scheme for secondary users (SUs) in a massive multipleinput multiple-output (MIMO) CRN to determine occupation and emptiness of scanned wideband channels. In the proposed H-learning method, the clustered neighboring SUs collect data to check the status of channels that improve reliability of measured sensing. Then, they share information about different frequency channels with other clusters and the status of channel occupation is determined for all SUs. This model-based learning method increases finding free channels and enhances spectral efficiency (SE) in presence of large probability of missing detection. Furthermore, each SU learns the presence pattern of primary user (PU) and gather a dynamic scan priority list to decrease scan overhead and access delays. Simulation results demonstrate the multi-agent reinforcement modified H-learning (MH-learning) method can achieve better performance in terms of PU usage percent, number of attempts, call block rate, and probability of detection in comparison to H-learning and some state-of-art learning methods.
لیست مقالات
لیست مقالات بایگانی شده
Design and Analysis of Concentrated Field TFPM Generator for Direct-Drive Wind Turbines
Maryam Salehi - Ahmad Darabi - Aghil Ghaheri - Mohammad Hoseintabar Marzebali
Full Soft Switching Interleaved High Voltage Gain Converter For Renewable Energy Systems
Baharak Akhlaghi
A Novel method for power transmission lines Protection Against the Sub-Synchronous Resonance Using thyristor-based reactive power compensation
Mohammadreza Mousavi Khademi - Mehdi Zareian Jahromi
Recurrence Quantification and Machine Learning: A Novel Approach for Parkinson’s Disease Diagnosis from EEG Signals
Asghar Zarei - Alireza Talesh Jafadideh
Robust Wireless Power Transfer by Self-Oscillating Controlled Inverter and Double-D Pads
Alireza Eikani - Mohammad Amirkhani - Hossein Jafari - Hesamodin Abdoli - Sadegh Vaez-Zadeh - Ghasem Rezazadeh
The Conduction Mechanism in Micron-Thick ZnO Layers Grown on Si Substrates by Spray Pyrolysis
Mohsen Gharesi - Alireza Karimpour - Reza Razmand - Faramarz Hossein-Babaei
A Highly-Linear Wideband Differential Low-Noise Amplifier Using Derivative Superposition Technique
Abolfazl Rajaiyan - Mehdi Saberi
Sensitivity Analysis of Power Production and Efficiency in Shahid Mofateh Hamedan Power Plant: A Comparative Study of Operational Indicators
Mahdi Aliyari-Shoorehdeli - Aryan Isapour
Precise model extraction for Li-Ion batteries using segmented Columb counting and Kalman filtering
Ali Fotokkiani - Ali Ghanbarian - Amirhossein Esteghamat - Ali Fotowat-Ahmady - Farzad Tahami
Design of Fresnel-Region Millimeter-Wave Metasurface Beam Shaper Using Deep Learning
Mohammad Hossein Koohi Ghamsari - Ehsan Imanbeygi - Mehdi Ahmadi-Boroujeni
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2