0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Multi-agent H-Learning Based Cooperative Spectrum Sensing for Cognitive Radio Networks
نویسندگان :
Elaheh Karimpour Fard
1
Mahdi Nouri
2
Hamid Behroozi
3
Sima Sobhi-Givi
4
1- دانشگاه صنعتی شریف
2- دانشگاه صنعتی شریف
3- دانشگاه صنعتی شریف
4- دانشگاه ارومیه
کلمات کلیدی :
Cognitive radio network،Cooperative spectrum sensing،Massive MIMO،Multi-agent reinforcement learning،Model-based H-learning،Gaussian kernel reward function
چکیده :
Fast and accurate methods for spectrum sensing (SS) are the key elements in cognitive radio networks (CRNs) that achieve high SS. This paper proposes a reinforcement learning (RL) scheme for secondary users (SUs) in a massive multipleinput multiple-output (MIMO) CRN to determine occupation and emptiness of scanned wideband channels. In the proposed H-learning method, the clustered neighboring SUs collect data to check the status of channels that improve reliability of measured sensing. Then, they share information about different frequency channels with other clusters and the status of channel occupation is determined for all SUs. This model-based learning method increases finding free channels and enhances spectral efficiency (SE) in presence of large probability of missing detection. Furthermore, each SU learns the presence pattern of primary user (PU) and gather a dynamic scan priority list to decrease scan overhead and access delays. Simulation results demonstrate the multi-agent reinforcement modified H-learning (MH-learning) method can achieve better performance in terms of PU usage percent, number of attempts, call block rate, and probability of detection in comparison to H-learning and some state-of-art learning methods.
لیست مقالات
لیست مقالات بایگانی شده
Distributed Deep Reinforcement Learning for Radio Resource Management in O-RAN
Ahmad Ahmadi Siahpoush - Vahid Shah-Mansouri
کاهش نویز و کلاتر در تصاویر رنگی داپلر اولترسوند
بهینا علیزاده - سید محمود سخایی
Carbon Doping and Defect Engineering in Hexagonal Boron Nitride: Insights from First-Principles Calculations
Matin Bakhtavari Mamagani - Maryam Keshavarz Afshar - Ebrahim Nadimi
تخمین کانال های پهپاد به پهپاد با استفاده از فیلتر کالمن توسعه یافته
فهیمه رنجبر - محمدعلی سبقتی
Modeling and control of two PPR cooperative manipulations with a passive joint
Hassan Khosravi - Farhad Fani Saberi - Rasul Fesharakifard
Integrating Model-Agnostic Meta-Learning with Advanced Language Embeddings for Few-Shot Intent Classification
Ali Rahimi - Hadi Veisi
Family of Multifunctional Controllable Converters for Grid, Battery, and PV-Powered EV Charging Station Applications
Homayon Soltani Gohari - Amir Safaeinasab - Karim Abbaszadeh
A Combined Channel Approach for Decoding Intracranial EEG Signals: Enhancing Accuracy through Spatial Information Integration
Maryam Ostadsharif Memar - Navid Ziaei - Behzad Nazari
Artificial Intelligence-Based Prediction of Flexibility Requirements in Power Systems
MohammadReza Zarei-Jeliani - Mahmud Fotuhi-Firuzabad - Niloofar Pourghaderi
Improving Spiking Neural Network Performance Using Astrocyte Feedback for Farsi Digit Recognition
Malihe Nazari - Fariba Bahrami - Mohammad Javad Yazdanpanah
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4