0% Complete
صفحه اصلی
/
بیست و نهمین کنفرانس مهندسی برق ایران
A Modified Low Rank Learning Based on Iterative Nuclear Weighting in Ripplet Transform for Denoising MR Images
نویسندگان :
Nooshin Farhangian
1
Mansour Nejati Jahromi
2
Mahdi Nouri
3
1- Islamic Azad University, South Tehran Branch
2- Islamic Azad University, South Tehran Branch
3- Sharif university of technology
کلمات کلیدی :
magnetic resonance image, peak signal-to-noise ratio, structural similarity index, Ripplet transform, singular value decomposition, weighted nuclear norm
چکیده :
In recent studies, several methods have been suggested to decrease noise of magnetic resonance image (MRI) in order to raise the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM). In this paper, we propose a novel method based on a minimization problem in Ripplet domain that uses singular value decomposition (SVD) in low rank learning to eliminate the noise of MRI images. We reschedule the weighted nuclear norm minimization (WNNM) problem in any edges of Ripplet domain transform and using an adaptive weighting structure to denoise the patches of Ripplet component matrix. The parameters of the proposed method are divided into two groups, some of them are calculated systematically based on the WNNM problem in input MR images, and some others are defined according to the problem situations. The proposed method is compared with recent state-of-the-art denoising methods by the synthetic and actual MR image datasets in the presence of the Rician and Gaussian noises. The experimental outcomes investigate the ability of the proposed method in reducing the noise and enhance the similarity performance in comparison to the other methods.
لیست مقالات
لیست مقالات بایگانی شده
An Investigation of Hardware Implementation of Multi-Valued Logic Using Different Nanodevices
Abdolah Amirany - Kian Jafari - Mohammad Hossein Moaiyeri
Stable Target Tracking in Wireless Sensor Networks Under Malicious Cyber Attacks
Jafar Akhondali - Mohammad Taheri
Design of Fresnel-Region Millimeter-Wave Metasurface Beam Shaper Using Deep Learning
Mohammad Hossein Koohi Ghamsari - Ehsan Imanbeygi - Mehdi Ahmadi-Boroujeni
Wake-Sleep Learning in R-STDP-Based Spiking Neural Networks to Avoid Catastrophic Forgetting
Mehrdad Baradaran - Katayoon Kobraei - Saeed Reza Kheradpisheh
Low power SRAM using an optimal number of split bit lines and single-ended sensing
Mahdie Nazemian - Sayed Masoud Sayedi
Wideband and Multi-band Frequency Selective Surfaces for Microwave Shielding
Mahmoodreza Marzban - Abbas Alighanbari
Unscented Kalman Filter adaptive noise covariance selection for satellite formation flying with Q_learning
Mohammad Hossein Nemati - MohammadRasoul Kankashvar - Hossein Bolandi
Modeling the Cable Bridge Based on Two Dimensional System and Analysing the Stability of Desired Model Based on Wave Advanced Model
Mehdi Mirshahi - Masoud Shafiee - Mehdi Mohammadi
طبقه بندی سکته مغزی در یک سیستم دو بعدی چند فرکانسی با استفاده از امواج مایکروویو و یادگیری عمیق
محسن مهرانیان - محمدسعید ماجدی - امیررضا عطاری
Low Complexity Single-Snapshot DOA Estimation Using Adaptive Filtering
Mojtaba Amiri - Mohammadreza Nargesi - Ali Olfat
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0