0% Complete
صفحه اصلی
/
بیست و نهمین کنفرانس مهندسی برق ایران
A Modified Low Rank Learning Based on Iterative Nuclear Weighting in Ripplet Transform for Denoising MR Images
نویسندگان :
Nooshin Farhangian
1
Mansour Nejati Jahromi
2
Mahdi Nouri
3
1- Islamic Azad University, South Tehran Branch
2- Islamic Azad University, South Tehran Branch
3- Sharif university of technology
کلمات کلیدی :
magnetic resonance image, peak signal-to-noise ratio, structural similarity index, Ripplet transform, singular value decomposition, weighted nuclear norm
چکیده :
In recent studies, several methods have been suggested to decrease noise of magnetic resonance image (MRI) in order to raise the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM). In this paper, we propose a novel method based on a minimization problem in Ripplet domain that uses singular value decomposition (SVD) in low rank learning to eliminate the noise of MRI images. We reschedule the weighted nuclear norm minimization (WNNM) problem in any edges of Ripplet domain transform and using an adaptive weighting structure to denoise the patches of Ripplet component matrix. The parameters of the proposed method are divided into two groups, some of them are calculated systematically based on the WNNM problem in input MR images, and some others are defined according to the problem situations. The proposed method is compared with recent state-of-the-art denoising methods by the synthetic and actual MR image datasets in the presence of the Rician and Gaussian noises. The experimental outcomes investigate the ability of the proposed method in reducing the noise and enhance the similarity performance in comparison to the other methods.
لیست مقالات
لیست مقالات بایگانی شده
Investigation of Impact Ionization Variations Versus Electric Field and Temperature in Compound Semiconductors for UV-APD Applications
Mohammad hossein Khoddami - Hassan Kaatuzian - Mohammad hossein Asgari
Hand Movment Decoding from EEG Signals Using Kalman Filter with Parameters Estimated via Neural Networks and Least Squares Method
Pegah Khoshkavandi - Mohammad B Shamsollahi - Ali Motie Nasrabadi
E-RESO: An Enhanced Time Redundancy-based Error Detection Approach for Arithmetic Operations
Sina Shahoveisi - Athena Abdi
FPGA-Based Multiplier with a New Approximate Full Adder for Error-Resilient Applications
Ali Ranjbar - Elham Esmaeili - Roghayeh Rafieisangari - Nabiollah Shiri
Investigation of The Thermal Process Stability Analysis By New BIBO Stability Algorithm of 2-D Discrete Models
Mehdi Mohammadi - Masoud Shafiee - Mahdi Mirshahi
A Barrier Function Based Feedback Linearization Method for On-line Output Tracking Control of Non-minimum Phase Systems
Fatemeh Jahangiri - Ali Talebi - Mohammad Bagher Menhaj
استفاده از زیرلایه متناوب و عناصر پروانه ای شکل برای ساخت آنتن آرایه بازتابی پهن باند
مرضیه عسگری - مهدیه بزرگی - محمود رفائی بوکت
پیشبینی بلندمدت بار فصلی شبکه برق با استفاده از روش سری زمانی ETS
میلاد حاجی ابوالحسنی - محسن صفرزاده - زهرا عظیمی - سیدمرتضی میرباقری
Design of Dual-Band Triangular Microstrip Antenna Using Fractal Structure for Wi-Max and Wi-Fi Applications
Arian Mianji - Mohammad Bemani - Saeid Nikmehr - Ahmad Atashpaz Gargari
Flexibility Assessment of Virtual Power Plant with Considering Dispatchable Wind Turbine
Mahdi Rahimi - Fatemeh Jahanbani Ardakani - Ali Reza Rahimi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2