0% Complete
صفحه اصلی
/
بیست و نهمین کنفرانس مهندسی برق ایران
A Modified Low Rank Learning Based on Iterative Nuclear Weighting in Ripplet Transform for Denoising MR Images
نویسندگان :
Nooshin Farhangian
1
Mansour Nejati Jahromi
2
Mahdi Nouri
3
1- Islamic Azad University, South Tehran Branch
2- Islamic Azad University, South Tehran Branch
3- Sharif university of technology
کلمات کلیدی :
magnetic resonance image, peak signal-to-noise ratio, structural similarity index, Ripplet transform, singular value decomposition, weighted nuclear norm
چکیده :
In recent studies, several methods have been suggested to decrease noise of magnetic resonance image (MRI) in order to raise the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM). In this paper, we propose a novel method based on a minimization problem in Ripplet domain that uses singular value decomposition (SVD) in low rank learning to eliminate the noise of MRI images. We reschedule the weighted nuclear norm minimization (WNNM) problem in any edges of Ripplet domain transform and using an adaptive weighting structure to denoise the patches of Ripplet component matrix. The parameters of the proposed method are divided into two groups, some of them are calculated systematically based on the WNNM problem in input MR images, and some others are defined according to the problem situations. The proposed method is compared with recent state-of-the-art denoising methods by the synthetic and actual MR image datasets in the presence of the Rician and Gaussian noises. The experimental outcomes investigate the ability of the proposed method in reducing the noise and enhance the similarity performance in comparison to the other methods.
لیست مقالات
لیست مقالات بایگانی شده
Differentiating Brain Connectivity Networks in ADHD and Normal Children using EEG
Roqaie Moqadam - Nazila Loghmani - Alireza Khorrami Moghaddam - Armin Allahverdy
Differential Protection for Power Transformers Using Tree-based Pipeline Optimization Tool
Reza Afsharisefat - Mohsen Jannati - Mohamad Reza Shams
Efficient and Fast Analysis of SIW Microwave Devices Using the Multiple Multipole Technique
Ahmad Bakhtafrouz - Mohammad Moemenian - Mohsen Maddahali - Mohsen Karimian Kakolaki
Multi-Agent Deployment Around a Source in the Plane Using Biased Extremum Seeking
Mohammadali Ghadiri-modarres - Mohsen Mojiri - Ehsan Fattahi
Brain Tumor Segmentation Using U-net and U-net++ Networks
Seyyed Ali Mortazavi-Zadeh - Alireza Amini - Hamid Soltanian-Zadeh
Multi-agent H-Learning Based Cooperative Spectrum Sensing for Cognitive Radio Networks
Elaheh Karimpour Fard - Mahdi Nouri - Hamid Behroozi - Sima Sobhi-Givi
High PSRR, 0.7nW MOSFET-Only Subthreshold Voltage Reference
Mohammad Rashtian - Mahdi Shahpasandi
طراحی ماتریس باتلر 8×4 در ساختارSIW با کاهش سطح گلبرگ جانبی در باند فرکانسی 60GHz
زهرا مهرزاد - غلامرضا مرادی - ایاز قربانی
Rank-Based Adaptive Brooding in a Mimetic Coral Reefs Search for Feature Selection
Seyed Amirhossein Farjadi - Mohammad Reza Akbarzadeh Totonchi
SchEdge: A Dynamic, Multi-agent, and Scalable Scheduling Simulator for IoT Edge
Ali Hamedi - Amirali Ghaedi - Amin Soltan-beigi - Athena Abdi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.7.4