0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Unscented Kalman Filter adaptive noise covariance selection for satellite formation flying with Q_learning
نویسندگان :
Mohammad Hossein Nemati
1
MohammadRasoul Kankashvar
2
Hossein Bolandi
3
1- Iran University of Science and Technology (IUST)
2- Iran University of Science and Technology (IUST)
3- Iran University of Science and Technology (IUST)
کلمات کلیدی :
formation flying،relative positioning،reinforcement learning،unscented Kalman filter،adaptive noise covariance selection
چکیده :
Abstract— There are many algebraic and dynamic approaches to satellite positioning. Kalman filtering methods are very common in spacecraft position determination. During recent decades, many algorithms and methods based on these filters have been introduced for satellite position estimation. Moreover, due to the coupling between orbital and Attitude dynamics, and also the dependency of some attitude determination algorithms to the precise position of the satellites in formation flying, it is critical to precisely determine the orbit and position of the satellite. This paper adopts the reinforcement learning (RL) method to improve the position estimation The method implemented in this paper for positioning of formation flying satellite is to exploit and merge the Unscented Kalman Filter (UKF) with Reinforcement Learning (RL) to find the optimal value of the process and measurement noise covariance matrices and improve the state estimation of position and velocity of the satellites. The proposed filter is simulated and the results are compared with conventional Kalman filters to demonstrate the effectiveness of this method.
لیست مقالات
لیست مقالات بایگانی شده
Improving Spiking Neural Network Performance Using Astrocyte Feedback for Farsi Digit Recognition
Malihe Nazari - Fariba Bahrami - Mohammad Javad Yazdanpanah
پیشبینی بازار سرمایه به کمک دادهکاوی با الگوریتمهای رگرسیونی
شیوا نمایان - محمدشهرام معین
A 1.2GHz wide bandwidth integer-N type-I PLL
Javad Tavakoli - Hossein Yaghobi - Samad Sheikhaei
مبدل زمان پیوسته سیگما دلتا با پهنای باند 200k-28M مناسب برای گیرنده های باند پایه3G,4G
فائزه جسور قره باغ - مرتضی موسی زاده
Compare of Machine Learning and Deep Learning Approaches for Human Activity Recognition
Babak Moradi - Mohammad Aghapour - Afshin Shirbandi
Diagnosis of Heart Diseases based on Processing Heart Sound using Machine Learning
Maryam Moulaverdi - Akbar Ranjbar
Stability Analysis of a New Switched SEIAR-Vac-Iso Epidemic Model for the COVID-19
Amir Hossein Amiri Mehra - Mohsen Shafieirad - Zohreh Abbasi - Iman Zamani
Optimal D2D Resource Allocation in Heterogeneous Cellular Networks by Decentralized Multi-Agent Deep Q-Learning
Pouya Akhoundzadeh - Ghasem Mirjalily - Mohammad taghi Sadeghi
Design and Modelling of a Modified Controller for D-STATCOM Considering Parametric Uncertainties and Unmodeled Dynamics
Majid Arabahmadi - Hossein Khaligh - Amirhossein Moghani - Ali Mosallanejad
A Highly-Linear Wideband Differential Low-Noise Amplifier Using Derivative Superposition Technique
Abolfazl Rajaiyan - Mehdi Saberi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2