0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Diagnosis of Heart Diseases based on Processing Heart Sound using Machine Learning
نویسندگان :
Maryam Moulaverdi
1
Akbar Ranjbar
2
1- دانشگاه شاهد تهران
2- دانشگاه شاهد تهران
کلمات کلیدی :
Deep learning،Feature extraction،Heart disease diagnosis،Signal processing
چکیده :
In this research, the data related to heart sounds are classified into five general categories. These five categories include normal sound (N), mitral stenosis (MS), mitral regurgitation (MR), aortic stenosis (AS), and mitral valve prolapse (MVP). The important goals of this research were to use an effective method to select better and more efficient features and advanced machine learning techniques to design a pattern and implement a classifier to separate all five categories of heart sounds. For this purpose, features have been extracted using MFCCs, DWT, and Mel Spectrogram methods. Then, by using SVM and RF methods, the results are checked, and a hybrid DNN network is presented using Co-Shuffle-LSTM. Finally, to check the generalization power of the best model, the multi-category cross-validation method has been used. In this method, FCSL and FCSLWM patterns were used, which reached 98.70% and 98.82% correctness in identifying and distinguishing cardiac signals.
لیست مقالات
لیست مقالات بایگانی شده
بررسی اثر فیدبک نوری بر مشخصه های دینامیکی لیزرهای قفل مد سیلیکونی
محمد شکرپور - محمد حسن یاوری
Proposed Small Signal Dynamic Model for a Grid-Connected Battery Storage System
Zahra Moradi- Shahrbabak
A High Gain Transformerless DC-DC Boost Converter Using LCD Network: Design and Experimental Verification
Hamed Hokmali - Ebrahim Afjei
Field Effect Phototransistor Based on Thin Film Ag2S Nanocrystals
Hossein Roshan - Mohammad Hossein Sheikhi
Improved Stability and Controller Design Criteria for 2- or n-dimensional Differential-Algebraic-Equation Systems via LMI Approach
Abdolah RoshanaeeDeh - Masoud Shafiee - Hajar Atrianfar
System Sectioning to Retain Durability of an Inverter-Based Microgrid
Sara Noorollah
ZYNQ Based Real-Time Data Logger with 256 kSPS Sampling using Ethernet Interface
Alireza Eteghad - Ataollah Panahgholi - Esmaeil Najafiaghdam
Ultra-Low-Latency QCA Adder Design Using an Innovative Carry Generator
Mohammad Mahdi Cheraghi - Reza Omidi - Ali Azarpeyvand
A Consensus-Based Approach for Short-Circuit Fault Type Detection in DC Microgrids Using ANFIS
Mohammadreza Mohammadhasani - Javad Sadeh
A 0.5-V Ultra-Low-Power Low-Pass-filter with Low Noise for ECG detection system
Yasin Heydarzadeh - Mehran Khanehbeygi - Sajad Sohrabian - Ziaddin Daie Koozehkanani
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2