0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Exploring Different Machine Learning-based Methods for Learning the Language of Shepna Stock Price
نویسندگان :
Zoreh Ansari
1
Jalal Raeisi Gahruei
2
Mansoor Khademi
3
1- Esfahan Oil Refinery
2- Esfahan Oil Refinery
3- Esfahan Oil Refinery
کلمات کلیدی :
Time series forecasting،Long Short-Term Memory،Reservoir Computing Neural Network،Large language models،Zero-shot learning
چکیده :
Accurate stock price forecasting is critical for financial decision-making and market policy formation. Despite the growing use of machine learning and deep learning methodologies for stock market prediction, reliably predicting stock prices remains a persistent challenge. In this work, we explore a bioinspired neural architecture, Reservoir Computing (RC), alongside more conventional LSTM-based networks for predicting the Shepna (Esfahan Oil Refinery) stock price. Additionally, we investigate the Chronos model family—an emerging class of Large Language Model (LLM)-based time series forecasting architectures capable of zero-shot learning, thus facilitating transfer learning in time series prediction tasks. Experimental evaluations compare the predictive performance of RC, LSTM, and Chronos under varied hyperparameter configurations. Results indicate that an optimized RC architecture consistently outperforms both LSTM and Chronos, suggesting the robustness of RC for real-world financial applications. We further analyze how key parameters influence Chronos’ zero-shot forecasting capability, providing insight into LLM-driven approaches for time series modeling. These findings underscore the potential benefits of bioinspired neural architectures and large language model-based methods in advancing stock price prediction.
لیست مقالات
لیست مقالات بایگانی شده
Ground-based Power Line Sag Measurement by Combining Data from a Smartphone and a Laser Rangefinder
Mohammad Javad Abdollahifard - Reza Bahrami
Modeling and Analysis of Segmental Translator Permanent Magnet Linear Switched Reluctance Motor
Milad Golzarzadeh - Hashem Oraee - Babak Ganji
کنترل دوز داروی بیماران مبتلا به لوسمی با استفاده از روشی نوین بر پایه یادگیری تقویتی عمیق
مریم افخمی - امین نوری
Image steganography Based on Chaos permutation, authentication and wiener deconvolution
Ali Sheidaee - Mohammad Asadpour - Leili Farzinvash
امکان سنجی نظری آشکارسازی گاز سولفید هیدروژن توسط سیلی گرافن (g-SiC2)
حامد مهدوی نژاد - رزا صفایی - محمدحسین شیخی
Q-Learning-Oriented Distributed Energy Management of Grid-Connected Microgrid
Esmat Samadi - Ali Badri - Reza Ebrahimpour
Design of a High-Efficiency Balanced Power Amplifier with 68% Fractional Bandwidth
Fatemeh Mohabati - Marzieh Chegini - Mahmoud Kamarei
Fractional-Order Model Prediction Attitude Control For Unmanned Aerial Vehicles
Hossein Hassanzadeh Yaghini
Power Transformer Vibration Study and its Application in Winding Deformation Detection
Amir Esmaeili Nezhad - Mohammad Hamed Samimi
تجزیه و تحلیل امواج فیبریلاتور دهلیزی به منظور طبقهبندی AF با استفاده از موجک لیدر
سارا میهن دوست
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3