0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Exploring Different Machine Learning-based Methods for Learning the Language of Shepna Stock Price
نویسندگان :
Zoreh Ansari
1
Jalal Raeisi Gahruei
2
Mansoor Khademi
3
1- Esfahan Oil Refinery
2- Esfahan Oil Refinery
3- Esfahan Oil Refinery
کلمات کلیدی :
Time series forecasting،Long Short-Term Memory،Reservoir Computing Neural Network،Large language models،Zero-shot learning
چکیده :
Accurate stock price forecasting is critical for financial decision-making and market policy formation. Despite the growing use of machine learning and deep learning methodologies for stock market prediction, reliably predicting stock prices remains a persistent challenge. In this work, we explore a bioinspired neural architecture, Reservoir Computing (RC), alongside more conventional LSTM-based networks for predicting the Shepna (Esfahan Oil Refinery) stock price. Additionally, we investigate the Chronos model family—an emerging class of Large Language Model (LLM)-based time series forecasting architectures capable of zero-shot learning, thus facilitating transfer learning in time series prediction tasks. Experimental evaluations compare the predictive performance of RC, LSTM, and Chronos under varied hyperparameter configurations. Results indicate that an optimized RC architecture consistently outperforms both LSTM and Chronos, suggesting the robustness of RC for real-world financial applications. We further analyze how key parameters influence Chronos’ zero-shot forecasting capability, providing insight into LLM-driven approaches for time series modeling. These findings underscore the potential benefits of bioinspired neural architectures and large language model-based methods in advancing stock price prediction.
لیست مقالات
لیست مقالات بایگانی شده
Second-Order Sliding Mode Design Based on the Integration of Proportional-Integral and Nonlinear $\mathcal{H}_\infty$ Controllers for Load Frequency Control
Behrad Samari - Mohammad Javad Yazdanpanah
A 23.4-31.9 GHz Tunable RF-MEMS Impedance Matching Network for 5G Power Amplifier
Fazel Ziraksaz - Alireza Hassanzadeh
مدیریت برنامهریزی هاب انرژی در مواجه با عدم قطعیتهای شدید قیمت برق و بار مصرفکننده با استفاده از روش تئوری تصمیمگیری بر مبنای شکاف اطلاعاتی
رضا غریبی - بهروز وحیدی
Investigation of The Thermal Process Stability Analysis By New BIBO Stability Algorithm of 2-D Discrete Models
Mehdi Mohammadi - Masoud Shafiee - Mahdi Mirshahi
بهبودی بر مساله تشخیص اشیا برجسته درتصاویر مبتنی بر یادگیری عمیق
مهران طاهری - محمد صادق هل فروش - کامران کاظمی
Efficiency Estimation Methods of In-Service Induction Motors-A Review
Moslem Geravandi - Hassan Moradi CheshmehBeigi
Scattering by an array of PEC cylinders in ferrite media using spectral technique
Zahra Bahrami - Asghar Keshtkar - Ayaz Ghorbani
Ultra-broadband and compact beamsplitters using subwavelength-grating-assisted zero gap directional couplers
Kamalodin Arik - Mahmood Akbari - Amin Khavasi
A Two-Step Stochastic Market-Oriented Approach for Optimal Operation of Commercial VPPs under Uncertainty
Jalal Moradi - Hossein Shahinzadeh - Ahmad Hafezimagham - Gevork B. Gharehpetian - S.M. Muyeen - Mohamed Benbouzid
Online Estimation of Power System Inertia Using Electromechanical Oscillation Parameters with High Penetration of Renewables
Shwan Sheikhahmadi - Ali Hesami Naghshbandy - Ayda Faraji
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4