0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Exploring Different Machine Learning-based Methods for Learning the Language of Shepna Stock Price
نویسندگان :
Zoreh Ansari
1
Jalal Raeisi Gahruei
2
Mansoor Khademi
3
1- Esfahan Oil Refinery
2- Esfahan Oil Refinery
3- Esfahan Oil Refinery
کلمات کلیدی :
Time series forecasting،Long Short-Term Memory،Reservoir Computing Neural Network،Large language models،Zero-shot learning
چکیده :
Accurate stock price forecasting is critical for financial decision-making and market policy formation. Despite the growing use of machine learning and deep learning methodologies for stock market prediction, reliably predicting stock prices remains a persistent challenge. In this work, we explore a bioinspired neural architecture, Reservoir Computing (RC), alongside more conventional LSTM-based networks for predicting the Shepna (Esfahan Oil Refinery) stock price. Additionally, we investigate the Chronos model family—an emerging class of Large Language Model (LLM)-based time series forecasting architectures capable of zero-shot learning, thus facilitating transfer learning in time series prediction tasks. Experimental evaluations compare the predictive performance of RC, LSTM, and Chronos under varied hyperparameter configurations. Results indicate that an optimized RC architecture consistently outperforms both LSTM and Chronos, suggesting the robustness of RC for real-world financial applications. We further analyze how key parameters influence Chronos’ zero-shot forecasting capability, providing insight into LLM-driven approaches for time series modeling. These findings underscore the potential benefits of bioinspired neural architectures and large language model-based methods in advancing stock price prediction.
لیست مقالات
لیست مقالات بایگانی شده
Energy Allocation Methods in NOMA Modulation Using Machine Learning Algorithms in the Presence of Jamming
Khashayar Saremi - Bahareh Akhbari
A Hybrid Data-Driven Algorithm for Real-Time Friction Force Estimation in Hydraulic Cylinders
Mohamad Amin Jamshidi - Mehrbod Zarifi - Zolfa Anvari - Hamed Ghafarirad - Mohammad Zareinejad
An Uncertain Optimal Factorization of Cooperative Manipulators for Robust Optimal Control Schemes
Neda Nasiri - Ahmad Fakharian - Mohammad Bagher Menhaj
The Effect of Cavity Length on Two-State Quantum Dot Laser Performance
Gholamreza Babaabasi - Mohammad Mohsen Sheikhey - Sara Alaei
A Subsurface Microwave Imaging System Based on the Combination of Sub-Band-Subspace Images
Mohammad Ramezaninia - Mohammad Zoofaghari - Abolfazl Gheibollahi - Abbas Ali Heidari
Design, Simulation, and fabrication of a compact dual-band GNSS antenna
Farnoosh Abbasi - Amir Saman Nooramin
Peer-to-peer Energy Sharing Considering Prosumers' Preferences and Load Uncertainties
Mohammad Bagher Moradi - Mohammad Hasan Nazari - Seyed Hossein Hosseinian - Hamed Nafisi
A Barrier Function Based Feedback Linearization Method for On-line Output Tracking Control of Non-minimum Phase Systems
Fatemeh Jahangiri - Ali Talebi - Mohammad Bagher Menhaj
طراحی و مدلسازی امولاتور دریچه گاز الکترونیکی برای کاربرد در خودرو
محمدرضا درزی - مجید شالچیان
Wide-band Cloaking of Finite Length PEC Cylindrical Objects under Oblique Incidence using Multi-Layer Mantle Cloak
Alireza Moosaei - Mohammad Hasan Neshati
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0