0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Exploring Different Machine Learning-based Methods for Learning the Language of Shepna Stock Price
نویسندگان :
Zoreh Ansari
1
Jalal Raeisi Gahruei
2
Mansoor Khademi
3
1- Esfahan Oil Refinery
2- Esfahan Oil Refinery
3- Esfahan Oil Refinery
کلمات کلیدی :
Time series forecasting،Long Short-Term Memory،Reservoir Computing Neural Network،Large language models،Zero-shot learning
چکیده :
Accurate stock price forecasting is critical for financial decision-making and market policy formation. Despite the growing use of machine learning and deep learning methodologies for stock market prediction, reliably predicting stock prices remains a persistent challenge. In this work, we explore a bioinspired neural architecture, Reservoir Computing (RC), alongside more conventional LSTM-based networks for predicting the Shepna (Esfahan Oil Refinery) stock price. Additionally, we investigate the Chronos model family—an emerging class of Large Language Model (LLM)-based time series forecasting architectures capable of zero-shot learning, thus facilitating transfer learning in time series prediction tasks. Experimental evaluations compare the predictive performance of RC, LSTM, and Chronos under varied hyperparameter configurations. Results indicate that an optimized RC architecture consistently outperforms both LSTM and Chronos, suggesting the robustness of RC for real-world financial applications. We further analyze how key parameters influence Chronos’ zero-shot forecasting capability, providing insight into LLM-driven approaches for time series modeling. These findings underscore the potential benefits of bioinspired neural architectures and large language model-based methods in advancing stock price prediction.
لیست مقالات
لیست مقالات بایگانی شده
A New High gain Transformerless DC-DC Converter with Low Voltage Stress on Power Switches
Amirreza Bahadori - Ali Nadermohammadi - Mohammad Maalandish - Seyed Hossein Hosseini - Mehran Sabahi
Design and Implementation of a fast flexible and efficient multichannel digital filter for hearing aids
Mohammadsadegh Poushnegar - Mahmoud Tabandeh - Meysam Nesary Moghadam - Farzam Gilani - Ali Aghakasiri
Design and Electromagnetic Analysis of Brushless Salient Pole Switching Flux Synchronous Generator with DC Auxiliary Field Winding for Wind Energy Converter Systems
Seyed Hamed Bibak - Mohammad Hossein Mousavi - Moslem Geravandi
A Technical-Managerial Framework for Determining Periodic Performance Indices and Operating Ranges of Power Grid Frequency
Hamed Delkhosh - Hossein Seifi - Sajjad Gholamnejad - Morteza Yousefian
Wake-Sleep Learning in R-STDP-Based Spiking Neural Networks to Avoid Catastrophic Forgetting
Mehrdad Baradaran - Katayoon Kobraei - Saeed Reza Kheradpisheh
Low-Loss, Low-Drive Voltage, and High-Bandwith Thin-Film Lithium Niobate Modulator Using Coaxial Transmission Line
Mohsen Karimian Kakolaki - Ahmad Bakhtafrouz - Parisa Karimi
Impedance Evaluation of Plasmonic Nano Dipole Antennas Based on Guided TE Mode
Daniyal Khosh Maram - Hanieh Talati Aghdam - Hamed Abnavi
Tumor-treating fields orientation effects on breast cancer cells in vitro
Fatemeh Khanmohammadi - Mohammad Sadegh Bank - Majid Badieirostami
User Management in Cell-Free Massive MIMO Systems with Limited Fronthaul Capacity
Siminfar Samakoush Galougah - Hamed Masoumi - Mohammad Javad Emadi
کنترل وضعیت ماهواره با کنترل پیشبین اقتصادی مقاوم مبتنی بر تیوب با محاسبات کاهش یافته
مهیار مدنی اصفهانی - عارف آقاملائی - طالب عبدالهی - سعید شمقدری
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2