0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Exploring Different Machine Learning-based Methods for Learning the Language of Shepna Stock Price
نویسندگان :
Zoreh Ansari
1
Jalal Raeisi Gahruei
2
Mansoor Khademi
3
1- Esfahan Oil Refinery
2- Esfahan Oil Refinery
3- Esfahan Oil Refinery
کلمات کلیدی :
Time series forecasting،Long Short-Term Memory،Reservoir Computing Neural Network،Large language models،Zero-shot learning
چکیده :
Accurate stock price forecasting is critical for financial decision-making and market policy formation. Despite the growing use of machine learning and deep learning methodologies for stock market prediction, reliably predicting stock prices remains a persistent challenge. In this work, we explore a bioinspired neural architecture, Reservoir Computing (RC), alongside more conventional LSTM-based networks for predicting the Shepna (Esfahan Oil Refinery) stock price. Additionally, we investigate the Chronos model family—an emerging class of Large Language Model (LLM)-based time series forecasting architectures capable of zero-shot learning, thus facilitating transfer learning in time series prediction tasks. Experimental evaluations compare the predictive performance of RC, LSTM, and Chronos under varied hyperparameter configurations. Results indicate that an optimized RC architecture consistently outperforms both LSTM and Chronos, suggesting the robustness of RC for real-world financial applications. We further analyze how key parameters influence Chronos’ zero-shot forecasting capability, providing insight into LLM-driven approaches for time series modeling. These findings underscore the potential benefits of bioinspired neural architectures and large language model-based methods in advancing stock price prediction.
لیست مقالات
لیست مقالات بایگانی شده
Anomaly Detection in Urban Water Distribution Grids Using Fog Computing Architecture
Sara Mirzaie - Mohammadreza Avazaghaei - Omid Bushehrian
Attractors Manipulation in Denoising Autoencoders for Robust Phone Recognition
Shaghayegh Reza - Seyyed Ali Seyyedsalehi - Seyyedeh Zohreh Seyyedsalehi
An Autonomous Multi Agent Q-Learning Approach for Resource Allocation in D2D-Enabled Heterogeneous Networks
Pouya Akhoundzadeh - Ghasem Mirjalily - Mohammad taghi Saadeghi
Medial Residual Encoder Layers for Classification of Brain Tumors in Magnetic Resonance Images
Zahra Sobhaninia - Nader Karimi - Pejman Khadivi - Shadrokh Samavi
مکان یابی اهداف در محیط مختلط دید مستقیم و غیر مستقیم مبتنی بر اندازه گیری های RSS و TOA با مدل احتمالاتی
محمدرضا شمسیان - فریدون بهنیا
An Accurate Subthreshold Analytical Model for Black Phosphorus Heterojunction Dopingless Tunneling Field-Effect Transistors
Saeid Marjani - Mohamad Tolue Khayami
A Simplified Computational Method for a Proposed mm-Wave Reconfigurable Intelligent Surface
Nima Ahmadi - Forouhar Farzaneh
Noninvasive Diagnosis of the Type of Breast Tumor through Artificial Neural Networks
Pooya Tahmasebi - Maryam Mehdizadeh Dastjerdi - Ali Fallah - Saeid Rashidi
A Comprehensive Analysis of a Digital Control Strategy for Photovoltaic-Based Single-Phase Grid-Tied Inverter Systems
Soheil Hasani Sangani - Mohamad Reza Moslemnejad - Mojtaba Saeedi - Alireza Jalalitalab - Reza Beiranvand
Low-cost Broadband Reflectarray Antenna Using Cross Bow-Tie elements
Mahdieh Bozorgi - Mahmood Rafaei-Booket
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2