0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Exploring Different Machine Learning-based Methods for Learning the Language of Shepna Stock Price
نویسندگان :
Zoreh Ansari
1
Jalal Raeisi Gahruei
2
Mansoor Khademi
3
1- Esfahan Oil Refinery
2- Esfahan Oil Refinery
3- Esfahan Oil Refinery
کلمات کلیدی :
Time series forecasting،Long Short-Term Memory،Reservoir Computing Neural Network،Large language models،Zero-shot learning
چکیده :
Accurate stock price forecasting is critical for financial decision-making and market policy formation. Despite the growing use of machine learning and deep learning methodologies for stock market prediction, reliably predicting stock prices remains a persistent challenge. In this work, we explore a bioinspired neural architecture, Reservoir Computing (RC), alongside more conventional LSTM-based networks for predicting the Shepna (Esfahan Oil Refinery) stock price. Additionally, we investigate the Chronos model family—an emerging class of Large Language Model (LLM)-based time series forecasting architectures capable of zero-shot learning, thus facilitating transfer learning in time series prediction tasks. Experimental evaluations compare the predictive performance of RC, LSTM, and Chronos under varied hyperparameter configurations. Results indicate that an optimized RC architecture consistently outperforms both LSTM and Chronos, suggesting the robustness of RC for real-world financial applications. We further analyze how key parameters influence Chronos’ zero-shot forecasting capability, providing insight into LLM-driven approaches for time series modeling. These findings underscore the potential benefits of bioinspired neural architectures and large language model-based methods in advancing stock price prediction.
لیست مقالات
لیست مقالات بایگانی شده
Improving the Accuracy of the Annotation Algorithm in Pattern-Based Tennis Game Video
Azam Bastanfard - Dariush Amirkhani
FGM Copula based Analysis of Outage Probability for Wireless Three-User Multiple Access Channel with Correlated Channel Coefficients
Mona Sadat Mohsenzadeh - Ghosheh Abed Hodtani
Breast Cancer Detection by Time-Reversal Imaging Using Ultra-Wideband Modified Circular Patch Antenna Array
Mohammad Haghpanah - Zahra Ghattan Kashani - Atefeh Khalili Param
Optimization and Analysis of Transformer Hot Spot Temperature Under Harmonic Conditions with Different Windings
Mehran Nemati - Hamed Karimi - Alireza Siadatan - Maryam Sepehrinour
ارائه یک مبدل DC-DC منبع امپدانسی تک سوئیچه تک هسته مغناطیسی فوق افزاینده مناسب برای استفاده در کاربرد های انرژی نو
معصومه پرستش - سجاد رستمی
Machine Learning-based Fundamental Stock Prediction Using Companies’ Financial Reports
Hossein Rezaei - Kamran Abdi - Mohsen Hooshmand
Kickback noise reduction and offset cancellation technique for dynamic latch comparator
Mansoure Yousefirad - Mohammad Yavari
Modeling Data Communications of Wireless Sensor Networks Based on MFM Model and Analyzing Its Stability Using Wave Advanced Model (WAM)
Saeedreza Tofighi - Masoud Shafiee
Study of an Improved Flux Reversal Permanent Magnet Outer-Rotor Motor
Mohammad Reza Sarshar - Mohammad Amin Jalali Kondelaji - Mojtaba Mirsalim
CatBoost Classifier For DDoS Detection In SDN Using Ryu Controller
Yazdan etdali Mohamadreza Noorifard
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4