0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Exploring Different Machine Learning-based Methods for Learning the Language of Shepna Stock Price
نویسندگان :
Zoreh Ansari
1
Jalal Raeisi Gahruei
2
Mansoor Khademi
3
1- Esfahan Oil Refinery
2- Esfahan Oil Refinery
3- Esfahan Oil Refinery
کلمات کلیدی :
Time series forecasting،Long Short-Term Memory،Reservoir Computing Neural Network،Large language models،Zero-shot learning
چکیده :
Accurate stock price forecasting is critical for financial decision-making and market policy formation. Despite the growing use of machine learning and deep learning methodologies for stock market prediction, reliably predicting stock prices remains a persistent challenge. In this work, we explore a bioinspired neural architecture, Reservoir Computing (RC), alongside more conventional LSTM-based networks for predicting the Shepna (Esfahan Oil Refinery) stock price. Additionally, we investigate the Chronos model family—an emerging class of Large Language Model (LLM)-based time series forecasting architectures capable of zero-shot learning, thus facilitating transfer learning in time series prediction tasks. Experimental evaluations compare the predictive performance of RC, LSTM, and Chronos under varied hyperparameter configurations. Results indicate that an optimized RC architecture consistently outperforms both LSTM and Chronos, suggesting the robustness of RC for real-world financial applications. We further analyze how key parameters influence Chronos’ zero-shot forecasting capability, providing insight into LLM-driven approaches for time series modeling. These findings underscore the potential benefits of bioinspired neural architectures and large language model-based methods in advancing stock price prediction.
لیست مقالات
لیست مقالات بایگانی شده
Crypto Currency Price Prediction Using Preprocessed Scaled Inputs LSTM Model Enhanced by Improved Gray Wolf Optimization
Amir RabbaniParsa - Mahboobeh Hoshmand - Seyyed Abed Hosseini
RCS Calculation of a Symmetrical Microstrip Array Using Discrete Bodies of Revolution Method
Hossein Mohammadzadeh - Abolghasem Zeidaabadi Nezhad - Zaker Hossein Firouzeh
FGM Copula based Analysis of Outage Probability for Wireless Three-User Multiple Access Channel with Correlated Channel Coefficients
Mona Sadat Mohsenzadeh - Ghosheh Abed Hodtani
System Sectioning to Retain Durability of an Inverter-Based Microgrid
Sara Noorollah
Fault tolerant control design for linear systems based on cubic observers
Mahsa Hasanshahi - Malihe Maghfoori Farsangi - Elham Amini Boroujeni
پیچش زمانی عمیق برای انطباق چندگانه سری های زمانی
سیدعلیرضا نوربخش - نرجس الهدی محمدزاده
An Analysis of Nash Equilibrium Learning through Myopic Decision-making in Incomplete Information Double Sided Auction Games within Markets
Hesam Farzaneh - Parsa Zholideh
Stability Analysis of Distributed-Order Systems: a Lyapunov Scheme
Vahid Badri
BLSTM-Convolutional Neural Networks for Respiratory Disease Diagnosis
Mohammad Hassan Khamechian - Mohammad Reza Akbarzadeh Tootoonchi
تحلیل حرارتی لیزر تابنده از سطح کاواک-عمودی با ساختار بازتابگر ترکیبی توری کنتراست بالا یکپارچه و بازتابشگر براگ
حسن هوشدار رستمی - وحید احمدی - سعید پهلوان
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1