0% Complete
صفحه اصلی
/
بیست و نهمین کنفرانس مهندسی برق ایران
Noninvasive Diagnosis of the Type of Breast Tumor through Artificial Neural Networks
نویسندگان :
Pooya Tahmasebi
1
Maryam Mehdizadeh Dastjerdi
2
Ali Fallah
3
Saeid Rashidi
4
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
4- دانشگاه آزاد اسلامی واحد علوم و تحقیقات بوشهر
کلمات کلیدی :
Breast, Cancer diagnosis, Hyperelastic model, Neural network, Parameter estimation, Tissue modeling
چکیده :
Different changes such as developing benign and malignant lesions in tissues lead to specific variations in their macroscopic and microscopic structure, which are associated with the alteration of their mechanical properties. In the present study, the mechanical parameters of different breast tissue lesions were noninvasively estimated with high precision based on the displacement data by using the powerful neural network method in order to detect the type of tumor in the breast tissue. The displacement data of various breast tissues, as well as the corresponding mechanical properties were acquired to develop and train the neural network models. The finite element modeling using Abaqus software was applied for simulating breast tissue behavior and extracting the relevant displacement data to train the neural networks. Ogden and Yeoh hyperelastic models which are precise for expressing the hyperelastic behavior of soft tissues, specifically the breast, were used to create the finite element model for tumor-containing breast tissue. In order to obtain a robust neural network model, white noise was added into the displacement data extracted from the finite element model to simulate laboratory conditions during deriving tissue data from finite element model. Based on the results, the trained neural network models represent high precision and efficiency in estimating the mechanical parameters of various breast tissues based on the displacement data, which promises its use for carefully diagnosing the type of breast lesion.
لیست مقالات
لیست مقالات بایگانی شده
Towards Non-Invasive Deep Brain Stimulation Using Temporal Interference Method
Mehdi Gholami - Farshid Ghobadzadeh - Fatemeh Yazdanshenas - Amir Yazdani - Mohammad Neshat
مدل سازی سینگولار گسسته زمان یک سیستم الکتریکی و کنترل آن به روش الگوریتم یادگیری تکرارشونده
علی غلامی بنادکوکی - طاهره بینازاده
A Fast Approach for Deep Neural Network Implementation on FPGA
Maedeh Nobari - Hadi Jahanirad
Forecasting Crude Oil Prices using improved deep belief network (IDBN) and long-term short-term memory network (LSTM)
Mohammad Mahdi Lotfi Heravi - Mahsa Khorrampanah - Monireh Houshmand
Improving Adaptive Algorithm to Reduce Grounding System Impedance Computing Time
Soheil Rahnamayian Jelodar - Seyed Hossein Hesamedin Sadeghi - Reza Rahmani - Mohammad Ali Narooie Dehchil - Hossein Askarian Abyaneh
Optimal Sizing and Placing of Capacitors in Distribution Networks in the Presence of Three-Phase Induction Motors Using Genetic Algorithm
Seyed Amir Hossein Mohamadi - Seyed Amir Mohammad Lahaghi - Shayan Nazari - Behrooz Zaker
امکان استفاده از پلی آنیلین دوبعدیC3N به عنوان آشکار سازِ گاز استالدهیدِ بازدم در دستگاه های تشخیصِ غیر تهاجمیِ سرطان ریه: مطالعه اصل اولیه
محمد حسین امیدواری - حامد مهدوی نژاد - رزا صفایی اسدآبادی - محمدحسین شیخی
Combination of Classifiers to Detecting Grade of Gliblastoma using MRS
Roqaie Moqadam - Nazila Loghmani - Meysam Siyahmansoori - Armin Allahverdy
A Hybrid Approach for Multimodal Biometric Recognition based on Feature Level Fusion in Reproducing Kernel Hilbert Space
Mohammad Hassan Safavipour - Mohammad Ali Doostari - Hamed Sadjedi
Diagnosis of Heart Diseases based on Processing Heart Sound using Machine Learning
Maryam Moulaverdi - Akbar Ranjbar
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2