0% Complete
صفحه اصلی
/
بیست و نهمین کنفرانس مهندسی برق ایران
Noninvasive Diagnosis of the Type of Breast Tumor through Artificial Neural Networks
نویسندگان :
Pooya Tahmasebi
1
Maryam Mehdizadeh Dastjerdi
2
Ali Fallah
3
Saeid Rashidi
4
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
4- دانشگاه آزاد اسلامی واحد علوم و تحقیقات بوشهر
کلمات کلیدی :
Breast, Cancer diagnosis, Hyperelastic model, Neural network, Parameter estimation, Tissue modeling
چکیده :
Different changes such as developing benign and malignant lesions in tissues lead to specific variations in their macroscopic and microscopic structure, which are associated with the alteration of their mechanical properties. In the present study, the mechanical parameters of different breast tissue lesions were noninvasively estimated with high precision based on the displacement data by using the powerful neural network method in order to detect the type of tumor in the breast tissue. The displacement data of various breast tissues, as well as the corresponding mechanical properties were acquired to develop and train the neural network models. The finite element modeling using Abaqus software was applied for simulating breast tissue behavior and extracting the relevant displacement data to train the neural networks. Ogden and Yeoh hyperelastic models which are precise for expressing the hyperelastic behavior of soft tissues, specifically the breast, were used to create the finite element model for tumor-containing breast tissue. In order to obtain a robust neural network model, white noise was added into the displacement data extracted from the finite element model to simulate laboratory conditions during deriving tissue data from finite element model. Based on the results, the trained neural network models represent high precision and efficiency in estimating the mechanical parameters of various breast tissues based on the displacement data, which promises its use for carefully diagnosing the type of breast lesion.
لیست مقالات
لیست مقالات بایگانی شده
Analyzing Large-scale PV Plant Controllers by Technical Performance Indices using MCS Method
Hooman Nasrazadani - Alireza Sedighi - Hossein Seifi
طراحی و پیاده سازی ژنراتور تولید کننده پالس PFN-Marx فشرده و ماژولار برای تولید پالس 25 کیلوولتی
محمد حسین رنجبر - محمدجواد گل علی پور
A 30dB and 250μW High Linear Variable Gain Amplifier with Employing Gm-boosting and Common Mode Feedforward Techniques
Mehdi Shahabi
Control of a Wheeled Robot in the Presence of Wheels Sliding Using Robust Adaptive Control in Differential Game Format
Alireza Azimi - Roya Amjadifard - Aliakbar Ghasemzadeh
بکارگیری یادگیری عمیق در ارزیابی به هنگام پایداری ولتاژ کوتاه مدت با استفاده از داده های اندازه گیری فازوری
امیرحسین باباعلی - محمدتقی عاملی
TID-based PSS2B to Overcome LFO Issue in Multi-machine Power Systems
Javad Morsali
Compare Efficiency of Modeled and Designed Tilt Bi-rotor, Quad-rotor, and Hexa-rotor in Agriculture Application
Arshia Rezaei - Amin Talaeizadeh - Aria Alasti
Modeling Data Communications of Wireless Sensor Networks Based on MFM Model and Analyzing Its Stability Using Wave Advanced Model (WAM)
Saeedreza Tofighi - Masoud Shafiee
Effect of the Number of Quantum-Dot Layers on the Performance of the 1.3 µm InAs/GaAs VCSELs
Sara Alaei - Mahmood Seifouri - Saeed Olyaee - Gholamreza Babaabbasi
یک روش جدید در تشخیص اختلال طیف اوتیسم از تصاویر چهره کودکان با استفاده از معماری چندمقیاسی MS-ViT و پردازش لبهای
خسرو رضائی - طیبه شمولی جوانمردی - امیر محمد حیدری
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.7.4