0% Complete
صفحه اصلی
/
بیست و نهمین کنفرانس مهندسی برق ایران
Noninvasive Diagnosis of the Type of Breast Tumor through Artificial Neural Networks
نویسندگان :
Pooya Tahmasebi
1
Maryam Mehdizadeh Dastjerdi
2
Ali Fallah
3
Saeid Rashidi
4
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
4- دانشگاه آزاد اسلامی واحد علوم و تحقیقات بوشهر
کلمات کلیدی :
Breast, Cancer diagnosis, Hyperelastic model, Neural network, Parameter estimation, Tissue modeling
چکیده :
Different changes such as developing benign and malignant lesions in tissues lead to specific variations in their macroscopic and microscopic structure, which are associated with the alteration of their mechanical properties. In the present study, the mechanical parameters of different breast tissue lesions were noninvasively estimated with high precision based on the displacement data by using the powerful neural network method in order to detect the type of tumor in the breast tissue. The displacement data of various breast tissues, as well as the corresponding mechanical properties were acquired to develop and train the neural network models. The finite element modeling using Abaqus software was applied for simulating breast tissue behavior and extracting the relevant displacement data to train the neural networks. Ogden and Yeoh hyperelastic models which are precise for expressing the hyperelastic behavior of soft tissues, specifically the breast, were used to create the finite element model for tumor-containing breast tissue. In order to obtain a robust neural network model, white noise was added into the displacement data extracted from the finite element model to simulate laboratory conditions during deriving tissue data from finite element model. Based on the results, the trained neural network models represent high precision and efficiency in estimating the mechanical parameters of various breast tissues based on the displacement data, which promises its use for carefully diagnosing the type of breast lesion.
لیست مقالات
لیست مقالات بایگانی شده
Selenium Doped Hafnium Disulfide Alloy for Visible Photodetection
Mohammadreza Razeghizadeh - Mohsen Mazaherifar - Mahdi Pourfath
A Comprehensive Analysis Method to Improve the Operation of Transmission Networks from the Perspective of Resonance and Ferroresonance phenomena
MohamadAli Amini - Mehdi SALAY NADERI - Ali Asghar Farrokhi Raad - Gevork B. Gharehpetian
بهبود بازدهی انرژی در سیستم های بدون سلول با آنتن های انبوه مبتنی بر مخابرات پهپادها به کمک انتقال همزمان توان و اطلاعات به صورت بی سیم
امیرحسین زحمتی - محسن اسلامی
A New Gradient Driver with only a Single DC Voltage Source For Using In MRI Systems
Amirabbas Naghipour Shahrbabaki - Reza Beiranvand
PAVID-CVs: Persian Audio-Visual Database of CV syllables
Mahsa Hedayatipour - Yasser Shekofteh - Mohsen Ebrahimi Moghaddam
Optimizing Dual IMU Sensor Placement for Gait Phase Detection with LSTM Models
Mahya Abedi - Zolfa Anvari - Hamed Ghafarirad - Mohammad Zareinejad
طراحی کنترلکننده مد لغزشی دینامیک برای سیستم تعلیق فعال غیر خطی با عملگر غیرایدهآل
مونا عظیمی - الهه مرادی
A Technical-Managerial Framework for Determining Periodic Performance Indices and Operating Ranges of Power Grid Frequency
Hamed Delkhosh - Hossein Seifi - Sajjad Gholamnejad - Morteza Yousefian
A new LDO regulator with adaptive PSR improvement under wide load current range and fast load transient response
Mohammad Ahmadi - Emad Ebrahimi
SchEdge: A Dynamic, Multi-agent, and Scalable Scheduling Simulator for IoT Edge
Ali Hamedi - Amirali Ghaedi - Amin Soltan-beigi - Athena Abdi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0