0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Enhancing Fetal Brain MRI Segmentation with Adaptive Attention Mechanisms and Residual Blocks
نویسندگان :
Nazanin Valaee
1
Vajiheh Sabeti
2
1- دانشگاه الزهرا(س)
2- Alzahra University
کلمات کلیدی :
deep learning،Convolutional neural networks،Fetal brain segmentation،Medical image processing
چکیده :
Segmentation of fetal brain MRI is a critical task for assessing prenatal brain development, yet it remains one of the most challenging tasks due to low tissue contrast and motion artifacts. In this work, we propose a novel deep learning approach incorporating Adaptive Attention Mechanisms, Multi-Scale Feature Extraction, Residual Blocks, and an Edge-Aware Loss Function to improve segmentation accuracy. Our approach outperforms state-of-the-art techniques in seven crucial brain structures with an average Dice score of 0.90. The performance witnessed herein is better than that achieved by any of the previous models when trained for the same task, hence proving our model’s capability to deliver accurate and reliable segmentation of fetal brain MRI, thus aiding in improving clinical decision-making
لیست مقالات
لیست مقالات بایگانی شده
A new double rotor switched reluctance motor aiming at average torque improvement
Reza Rezaei - Seyed Reza Mousavi Aghdam
A Novel Approach to Pulmonary Embolism Segmentation: Increasing an Attention-based U-Net
Hanie Arabian - Alireza Karimian - Hosein Arabi - Marjan Mansourian
Transmission Dynamics and Optimal Control Strategy to Mitigate the Spread of Novel Coronavirus: The Case of Iran
Reza Shadi - Ahmad Fakharian - Hamid Khaloozadeh
تشخیص و مکان یابی خطاها در آرایه های فتوولتائیک متصل به شبکه
سعید انصاری - حیدر صامت - تیمور قنبری
A New High Voltage Gain Z-Source Based DC-DC Converter for High-Power DG Applications
Sakina Bakhshi - Reza Beiranvand
طراحی و تحلیل یک حسگر پلاسمونیک ضریب شکست بر پایه فیبر بلور فتونی با هدف بهبود مشخصات فنی
علی یاوری - حسن کاتوزیان - سارا قلی نژاد شفق
Implementation of an Optimized Deep Learning Model to Assess Pediatric Sleep Apnea Severity Using SpO2 Signals on Resource-Limited Microcontrollers
Erfan Mortazavi - Hanieh Mohammadi - Bahram Tarvirdizadeh - Khalil Alipour - Mohammad Ghamari
VGG16-based Feature Fusion For Image Kyepoint Description
Javid Norouzi - Alireza Liaghat - Mohammad Sadegh Helfroush - Habibollah Danyali
بررسی کنترل مغناطیسی پاسخ کایرواپتیکی ساختارهای مگنتوکایرال
کی سیاوش کیکاوسی - حمیده دشتی خویدکی - جواد احمدی شکوه - مجید رشیدی هویه
Detecting Variance Changes in Alarm Systems Using Generalized Delay-timers
Zahra Sharifi - Iman Izadi - Jafar Ghaisari
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3