0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Surface roughness classification in dynamic touch using EEG signals
نویسندگان :
Ali Amini
1
Karim Faez
2
Mahmood Amiri
3
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه علوم پزشکی کرمانشاه
کلمات کلیدی :
surface roughness classification،EEG،convolutional neural networks
چکیده :
This study uses deep learning and EEG signals to classify surface roughness, an active yet less explored field of research that employs a robotic device to conduct tactile trials. This automated system utilizes a rotating wheel to position items with varying roughness levels, including smooth, semi-rough, and rough. The experiment was arranged such that subjects could use their index fingers on both hands to touch items embedded in the wheel. Each item makes contact with the index finger in both static and dynamic touch modes, and participants' brain data (EEG) are collected during the experiment. The recorded EEG is then utilized to create a model capable of detecting the roughness level of surfaces. The proposed TactileNet model, which is based on convolutional neural networks, classified the roughness level of touched surfaces with an accuracy of 95.67 percent. According to the comparative analysis, the proposed approach outperforms state-of-the-art results in terms of accuracy. Additionally, unlike previous research, the suggested method does not require manual feature extraction from EEG data.
لیست مقالات
لیست مقالات بایگانی شده
تخمین بهینه پارامترهای مدل یک ماژول فتوولتائیک توسط الگوریتم بهینه سازی Mayfly
پریسا اکبری - نجمه اقبال
Analyzing, simulating and measuring the effects of stirrers and walls on the performance of the RTS60 reverberation chamber
Mojtaba Basravi - Zakerhossein Firouzeh - Hadi Aliakbarian
Backstepping-based Adaptive Constrained Control of Passive Torque Simulator Using Function Approximation Technique
Seyyed Amirhossein Saadat - Mohammad Mehdi Fateh - Javad Keighobadi
Blind angle and angular range detection in planar and limited-view geometries for photoacoustic tomography
Soheil Hakakzadeh - Zahra Kavehvash
Decoding Trait: Using Dual Transformers to Analyze Gender, Age Range and Personality
ُSaeed Asadian - Mostafa Tanasan - Bijan Vosoughi vahdat
Optimized 5G-MMW Compact Yagi-Uda Antenna Based on Machine Learning Methodology
Alireza Jafarieh - Mahdi Nouri - Hamid Behroozi
A New 10 Watt 1.6 GHz Linear Power Amplifier with More than 11 dB Gain
Marzieh Chegini - HojjatAllah Nemati - Mahmoud Kamarei
Enhancing the Incident Angle Band in Carpet Cloaking using Deep Neural Networks
Amirhossein Fallah - Leila Yousefi - Ahmad Kalhor
Noninvasive Blood Pressure Classification Based on Photoplethysmography Using Machine Learning Techniques
Hanieh Mohammadi - Bahram Tarvirdizadeh - Khalil Alipour - Mohammad Ghamari
Using GA and ML to Improve LoRa Network Performance
Yas Hosseini Tehrani - Seyed mojtaba Atarodi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2