0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Optimal D2D Resource Allocation in Heterogeneous Cellular Networks by Decentralized Multi-Agent Deep Q-Learning
نویسندگان :
Pouya Akhoundzadeh
1
Ghasem Mirjalily
2
Mohammad taghi Sadeghi
3
1- Yazd university
2- Yazd university
3- Yazd university
کلمات کلیدی :
communication،resource allocation،interference management،multi agent،Deep Q-learning
چکیده :
This paper explores efficient resource allocation method in the Heterogenous cellular networks powered by device-to-device (D2D) communication, which allows mobile users to connect directly, thus enhancing spectrum utilization and system capacity. However, this direct communication can lead to increased interference and potentially degrade system performance. Addressing the challenge of allocating resources effectively in the presence of D2D communication, we propose a decentralized multi-agent deep Q-Learning approach named Autonomous Multi-Agent Deep Q-Learning (AMADQL). This algorithm empowers D2D users to act as individual agents that autonomously adjust their spectrum and power levels, aiming to minimize interference without depending on the network infrastructure. The proposed method is tested through simulations, where it showcases promising convergence and superior performance metrics compared to traditional resource allocation strategies.
لیست مقالات
لیست مقالات بایگانی شده
Helmet Microwave Array Applicator for Deep-Seated Brain Tumor Hyperthermia
Mohammad Moeini Arani - Mohammad Javad Hajiahmadi - Reza Faraji-Dana
A Digital Method for Offset Cancellation of Fully Dynamic Latched Comparators
Alireza Ahrar - Mohammad Yavari
ساخت یک تراشه میکروسیالی برای شمارش سلول های معلق در مایع با الکترود های مایع
نرگس حسین زاده - پادینا فرخیان - سیدعلی حسینی
Error Correction Enhancement in SCL Decoding of Polar Codes Using LSTM Network
Fatemeh Alia - Bahareh Akhbari - Mahmoud Ahmadian Attari
مدلسازی ریاضی و شبیه سازی پاندمی کووید 19در ایران
شبنم کوهستانی - نیلوفر مظفری - سید محمدرضا موسوی
Improved Attention U-Net combined with Conditional Random Field for Ischemic Lesion Segmentation from Magnetic Resonance Images
Ali Rezaei - Asieh Khosravanian - Habibollah Danyali - Kamran Kazemi - Ardalan Aarabi
Explainable AI-Driven Deep Learning Framework for Short-Term Net Load Forecasting
Sina Hossein Beigi Fard - ََAmir Hossein Baharvand - Amir Hossein Poursaeed - Meysam Doostizadeh
Synergy of Deep Learning and Artificial Potential Field Methods for Robot Path Planning in the Presence of Static and Dynamic Obstacles
Mohammad Amin Basiri - Shirin Chehelgami - Erfan Ashtari - Mehdi Tale Masouleh - Ahmad Kalhor
Design and simulation of a surface acoustic wave based micro pressure sensor
Sohrab Ghasemi Bisheh - Mohammad Tahmasebipour - Fatemeh Anousheh
A Novel Approach to Cheating Prevention in Demand Side Management Algorithms
Farahnaz Haftbaradaran - Ali Akhtari - Massoud Reza Hashemi - Zahra Baharlouei
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1