0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Optimal D2D Resource Allocation in Heterogeneous Cellular Networks by Decentralized Multi-Agent Deep Q-Learning
نویسندگان :
Pouya Akhoundzadeh
1
Ghasem Mirjalily
2
Mohammad taghi Sadeghi
3
1- Yazd university
2- Yazd university
3- Yazd university
کلمات کلیدی :
communication،resource allocation،interference management،multi agent،Deep Q-learning
چکیده :
This paper explores efficient resource allocation method in the Heterogenous cellular networks powered by device-to-device (D2D) communication, which allows mobile users to connect directly, thus enhancing spectrum utilization and system capacity. However, this direct communication can lead to increased interference and potentially degrade system performance. Addressing the challenge of allocating resources effectively in the presence of D2D communication, we propose a decentralized multi-agent deep Q-Learning approach named Autonomous Multi-Agent Deep Q-Learning (AMADQL). This algorithm empowers D2D users to act as individual agents that autonomously adjust their spectrum and power levels, aiming to minimize interference without depending on the network infrastructure. The proposed method is tested through simulations, where it showcases promising convergence and superior performance metrics compared to traditional resource allocation strategies.
لیست مقالات
لیست مقالات بایگانی شده
A high speed method for features extraction in face recognition systems
Hosein Khorami - Hadishahriar Shahhoseini
Social Welfare Maximization with Demand Response Program Using Stackelberg Game Theory
Mahtab Seyyedi - Ebrahim Pirmoradi - Turaj Amraee
A Wideband White and Colored Noise Generator as an Environmental Communication Systems Controller
Somayeh Mehraban - Nasser Masoumi
An Ensemble Model for Sleep Stages Classification
Sahar Hassanzadeh Mostafaei - Jafar Tanha - Amir Sharafkhaneh - Zohair Hassanzadeh Mostafaei - Mohammed Hussein Ali Al-jaf - Alireza Fakhim babaei
Weak GPS Signal Acquisition Based on Wavelet Transform Denoising and Deep Learning Method
Navid Moradi - Mohsen Nezhadshahbodaghi - Mohammad-Reza Mosavi
Modeling, estimation, and model predictive control for Covid-19 pandemic with finite security duration vaccine
Abolfazl Delavar - Reza Rahimi Baghbadorani
امکان سنجی نظری آشکارسازی گاز سولفید هیدروژن توسط سیلی گرافن (g-SiC2)
حامد مهدوی نژاد - رزا صفایی - محمدحسین شیخی
Efficient signal detection via compressive sensing in uplink massive MIMO systems
Soroush Mesforush Mashhad - Mojtaba Amiri - Ali Olfat
Dynamic Gait Analysis Using Hybrid Neural Networks: Online classification and Prediction of Locomotion Modes
Samira Dehghanian - Hamed Jalaly Bidgoly
Design of Optimal Iterative Learning Control AutoPilot for Landing Fixed-Wing Aircraft
Ali Raddanipour - Masoud Shafiee
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4