0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Enhancing Kriging with Inductive Spatio-Temporal GraphODE
نویسندگان :
Amin Sheykhzadeh
1
Behzad Moshiri
2
Ebrahim Ghafar-Zadeh
3
1- دانشگاه تهران
2- دانشگاه تهران
3- کانادا
کلمات کلیدی :
Spatio-temporal Kriging،Graph Neural Networks،Neural Differential Equations،Over-smoothing
چکیده :
Sensory networks in environmental monitoring provide real-time data on critical parameters, but the costs of installation and maintenance limit high-resolution data acquisition. Researchers aim to estimate values at specific locations without prior data samples, considering two approaches: virtual sensors and kriging. While virtual sensors face challenges in dynamic sensor networks where for every sensor added or disconnected the whole network should be retrained, kriging, especially spatio-temporal kriging using Graph Neural Networks, overcomes traditional kriging drawbacks and allows adaptability in dynamic sensor networks without frequent retraining. Despite their success, existing spatio-temporal kriging methods face challenges, notably the over-smoothing problem, restricting their ability to utilize deeper graph structures for a more comprehensive latent representation. In this paper, we propose a two-part method based on neural differential equations. The first part estimates values using spatial adjacency, while the second part refines these estimates considering temporal dependencies. Our approach explicitly addresses the over-smoothing problem, leading to a 2-8% improvement over state-of-the-art baseline methods. The results hold promise for enhancing the accuracy and effectiveness of environmental monitoring applications.
لیست مقالات
لیست مقالات بایگانی شده
طراحی و پیاده سازی ژنراتور تولید کننده پالس PFN-Marx فشرده و ماژولار برای تولید پالس 25 کیلوولتی
محمد حسین رنجبر - محمدجواد گل علی پور
A Framework for Plant Topology Extraction Using Process Mining and Alarm Data
Amir Neshastegaran - Ali Norouzifar - ایمان ایزدی
Image Inpainting Using AutoEncoder and Guided Selection of Predicted Pixels
Mohammad Hossein Givkashi - Mahshid Hadipour - َArezoo PariZanganeh - Zahra Nabizadeh Shahre-Babak - Nader Karimi - Shadrokh Samavi
A Modified Low Rank Learning Based on Iterative Nuclear Weighting in Ripplet Transform for Denoising MR Images
Nooshin Farhangian - Mansour Nejati Jahromi - Mahdi Nouri
Development of Reflectarray Antennas With a Deflected Beam: An Approach Based on Artificial Neural Networks
Mahdieh Esmaeiliporzani - Zahra Atlasbaf
یک روش جدید در تشخیص اختلال طیف اوتیسم از تصاویر چهره کودکان با استفاده از معماری چندمقیاسی MS-ViT و پردازش لبهای
خسرو رضائی - طیبه شمولی جوانمردی - امیر محمد حیدری
Weak GPS Signal Acquisition Based on Wavelet Transform Denoising and Deep Learning Method
Navid Moradi - Mohsen Nezhadshahbodaghi - Mohammad-Reza Mosavi
Stability Analysis for the Non-linear Model Predictive Control of a Flexible Joint Manipulator with Dynamics Uncertainties
Mohamadreza Satvati - Hossein Karimpour - Keivan Torabi - Mohammad Motaharifar
Selecting the Economical Energy Storage System for Photovoltaic Power Plants
Zahra Moradi-Shahrbabak
Higher Derivatives Extremum Seeking with Very Slow/ Drifting Sensor
Farzaneh Karimi - Mohsen Mojiri
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0