0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Compare of Machine Learning and Deep Learning Approaches for Human Activity Recognition
نویسندگان :
Babak Moradi
1
Mohammad Aghapour
2
Afshin Shirbandi
3
1- دانشگاه آزاد اسلامی واحد کرمانشاه
2- دانشگاه امیرکبیر
3- دانشگاه امیرکبیر
کلمات کلیدی :
Human activity recognition،Logistic Regression،SVM with RBF kernel،CNN،LSTM،Bi-Directional LSTM،CNN-LSTM
چکیده :
Human-centered computing is an emerging research field that aims to understand human behavior and integrate users and their social context with computer systems. This research aimed to find the best algorithm for human activity recognition. We used Logistic Regression, SVM with RBF kernel; CNN, LSTM, Bi-Directional LSTM, and CNN-LSTM algorithms for analyzing the data. The data analysis measured and compared the accuracy and training time. The most accuracy belonged to the CNN-LSTM and Bi-Directional LSTM, and the least training time belonged to the SVM with RBF kernel
لیست مقالات
لیست مقالات بایگانی شده
Design and Analysis of a New Hybrid Three-Phase Multilevel Inverter with Improved Specifications
Hossein Jafari - Daryoush Nazarpour - Sajjad Golshannavaz - Ebrahim Babaei
An Investigation on Transfer Learning for Classification of COVID-19 Chest X-Ray Images with Pre-trained Convolutional-based Architecture
Mobina Abdoli Nemati - ََAmirreza Baba Ahmadi
A New Protocol to Improve Effect of repetitive Transcranial Magnetic Stimulation in Treatment of Alzheimer's Disease
Ali Abedi - Gholamreza Moradi - Reza Sarraf Shirazi - Mehran Jahed
E-RESO: An Enhanced Time Redundancy-based Error Detection Approach for Arithmetic Operations
Sina Shahoveisi - Athena Abdi
On spatiotemporal-aware deep neural networks for real-time video fire detection: empowering image-based models with temporal and spatial features of video
Mahdi Shamisavi - Sahar Eslami - Amir Jahanshahi - Morteza Rajabzadeh
Propagation of Measurement Errors in the Euler Kinematic Equations
Mojtaba Fazelinia - Saeed Ebadollahi - Soheil Ganjefar
A Modified Low Rank Learning Based on Iterative Nuclear Weighting in Ripplet Transform for Denoising MR Images
Nooshin Farhangian - Mansour Nejati Jahromi - Mahdi Nouri
Distributed Deep Reinforcement Learning for Radio Resource Management in O-RAN
Ahmad Ahmadi Siahpoush - Vahid Shah-Mansouri
An Improved Version of the SIPO Algorithm with Fast Convergence Speed
Amir Soltany Mahboob - Hadi Shahriar Shahhoseini - Mohammad Reza Ostadi Moghaddam - Shima Yousefi
مدیریت انرژی شارژر خودروهای الکتریکی، به منظور افزایش ضریب نفوذ خودروهای الکتریکی و بهبود پروفیل ولتاژ شبکه های توزیع الکتریکی هوشمند با استفاده از شارژ خودروها در محل کار
مهدی افشار - سعید اسماعیلی جعفرآبادی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0