0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A New Protocol to Improve Effect of repetitive Transcranial Magnetic Stimulation in Treatment of Alzheimer's Disease
نویسندگان :
Ali Abedi
1
Gholamreza Moradi
2
Reza Sarraf Shirazi
3
Mehran Jahed
4
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
4- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
repetitive Transcranial Magnetic Stimulation،Machine Learning،Alzheimer Disease،Support Vector Machine،Electroencephalography
چکیده :
Despite significant breakthroughs in the clinical and instrumental evaluation of Alzheimer's Disease (AD) diagnosis, as well as therapeutic efficacy achieved to date, we still face challenges for early public classification. Recent studies show that the use of electroencephalographic (EEG) network analysis allows dynamic brain connectivity to be frozen, and that this is successful in increasing classification accuracy when EEG signals are used together with neuropsychological tests. In conclusion, this study sought to evaluate the therapeutic potential of rTMS using an innovative protocol on cognitive performances in AD treatment. Using an SVM-based classifier on EEG data, we obtained excellent sensitivity = (97%±3%), specificity = (97%±2%), and accuracy = (98%±2%), with AUC= (0.98±0.05) for the classification of healthy controls and AD patients. We have established, to our knowledge, a unique modulation of pulse train, interpulse intervals, and pulse width in rTMS protocol, which will potentiate its therapeutic response. Further, we adopted the Common Mode Features (CMF) approach to delineate common biomarkers between Alzheimer's disease and Parkinson's disease as well as between Huntington's Disease with Amyotrophic Lateral Sclerosis. This method can improve SVM classifier performance by securing diagnostic as well as pan-condition biomarkers and therefore could enhance classification power in a clinical setting. This study was conducted with a total sample of 59 subjects (34 healthy, and 25 AD), proving that rTMS combined with EEG and machine learning can serve as an inexpensive and non-invasive individualized approach to diagnosis improvement or treatment augmentation in cases of Alzheimer's disease.
لیست مقالات
لیست مقالات بایگانی شده
Enhancing Kriging with Inductive Spatio-Temporal GraphODE
Amin Sheykhzadeh - Behzad Moshiri - Ebrahim Ghafar-Zadeh
Investigating the Effects of Adding Distributed Generation Resources to the Distribution Networks on their Protection System Performance
Morteza Abbasghorbani - Elham Vahed
ساخت حسگر مقاومتی گاز سولفید هیدروژن با استفاده از ترکیب نانوذرات اکسید تیتانیوم و گرافن اکسید کاهش یافته
محمد دیانتی - سمانه حامدی
تشخیص حضور انسان در خانه های هوشمند با استفاده از شبکه ی بی سیم محلی
امیرمحمد بصیرت - نغمه سادات مویدیان
Electronic properties of 2D perovskites NMA2PbBr4 and NEA2PbBr4 for PeLED applications: first principle approach
Samad Shokouhi - Seyedeh bita Saadatmand - Vahid Ahmadi
The Comparison of MXene and Graphene-Based Antennas for 5G/6G Communications
Javad Shokri Seyyedi - Gholamreza Moradi - Reza Sarraf Shirazi - Sepehr Sahab - Abolfazl Ebrahimpour
A New Optimal Design of a Solar Power Plant On The Rooftop of Bovisa Train Station in Milan
Omid Nasirkhani - Mohsen Tamaddon
Application of Floquet theory in three-body problem: Periodic attitude motion
Ehsan Abbasali - Amirreza Kosari - Majid Bakhtiari
Improving the Performance and Robustness of Non-Minimum Phase Systems Using Integrated Feedforward-IMC Technique
Saeedreza Tofighi
Design and Analysis of a New Hybrid Three-Phase Multilevel Inverter with Improved Specifications
Hossein Jafari - Daryoush Nazarpour - Sajjad Golshannavaz - Ebrahim Babaei
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1