0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A New Protocol to Improve Effect of repetitive Transcranial Magnetic Stimulation in Treatment of Alzheimer's Disease
نویسندگان :
Ali Abedi
1
Gholamreza Moradi
2
Reza Sarraf Shirazi
3
Mehran Jahed
4
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
4- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
repetitive Transcranial Magnetic Stimulation،Machine Learning،Alzheimer Disease،Support Vector Machine،Electroencephalography
چکیده :
Despite significant breakthroughs in the clinical and instrumental evaluation of Alzheimer's Disease (AD) diagnosis, as well as therapeutic efficacy achieved to date, we still face challenges for early public classification. Recent studies show that the use of electroencephalographic (EEG) network analysis allows dynamic brain connectivity to be frozen, and that this is successful in increasing classification accuracy when EEG signals are used together with neuropsychological tests. In conclusion, this study sought to evaluate the therapeutic potential of rTMS using an innovative protocol on cognitive performances in AD treatment. Using an SVM-based classifier on EEG data, we obtained excellent sensitivity = (97%±3%), specificity = (97%±2%), and accuracy = (98%±2%), with AUC= (0.98±0.05) for the classification of healthy controls and AD patients. We have established, to our knowledge, a unique modulation of pulse train, interpulse intervals, and pulse width in rTMS protocol, which will potentiate its therapeutic response. Further, we adopted the Common Mode Features (CMF) approach to delineate common biomarkers between Alzheimer's disease and Parkinson's disease as well as between Huntington's Disease with Amyotrophic Lateral Sclerosis. This method can improve SVM classifier performance by securing diagnostic as well as pan-condition biomarkers and therefore could enhance classification power in a clinical setting. This study was conducted with a total sample of 59 subjects (34 healthy, and 25 AD), proving that rTMS combined with EEG and machine learning can serve as an inexpensive and non-invasive individualized approach to diagnosis improvement or treatment augmentation in cases of Alzheimer's disease.
لیست مقالات
لیست مقالات بایگانی شده
Application of Artificial Neural Network on Diagnosing Location and Extent of Disk Space Variations in Transformer Windings Using Frequency Response Analysis
Reza Behkam - Hossein Karami - Mahdi Salay Naderi - Gevork Gharehpetian
Virtual power plant participation in day-ahead and futures markets with a deep learning approach
Farzin Ghasemi Olanlari - Mohammad Fazel Dehghanniri - Turaj Amraee
A Mathematical 3D Solution to Efficiently Locate Drones in 5G Wireless Networks
Mina Taghavi - Jamshid Abouei
Better Exploration In Single-Agent Q-Learning Using Controlled Linear Perturbation
Sadredin Hokmi - Mohammad Haeri
Leader-Following H_∞ Fault-Tolerant Consensus of Nonlinear Multi-agent Systems with External Disturbances
Maryam Salimifard - Heidar Ali Talebi
A Hybrid Data-Driven Algorithm for Real-Time Friction Force Estimation in Hydraulic Cylinders
Mohamad Amin Jamshidi - Mehrbod Zarifi - Zolfa Anvari - Hamed Ghafarirad - Mohammad Zareinejad
Type-2 fuzzy expert system for management of smart home with combining renewable resources
Ali Beheshtikhoo - Mahdi Pourgholi - Iman Khazaee
A Modified Suspended Carrier Transmitter for Medical Implants
Khashayar Dehghan - Omid Shoaei - Shahin Jafarabadi Ashtiani
Privacy-Preserving Model Predictive Control Using Secure Multi-Party Computation
Saeed Adelipour - Mohammad Haeri
Improving Artificial Neural Network Performance Using Hybrid Activation Function
Morteza Taheri - Sajad Haghzad Klidbary
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0