0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A New Protocol to Improve Effect of repetitive Transcranial Magnetic Stimulation in Treatment of Alzheimer's Disease
نویسندگان :
Ali Abedi
1
Gholamreza Moradi
2
Reza Sarraf Shirazi
3
Mehran Jahed
4
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
4- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
repetitive Transcranial Magnetic Stimulation،Machine Learning،Alzheimer Disease،Support Vector Machine،Electroencephalography
چکیده :
Despite significant breakthroughs in the clinical and instrumental evaluation of Alzheimer's Disease (AD) diagnosis, as well as therapeutic efficacy achieved to date, we still face challenges for early public classification. Recent studies show that the use of electroencephalographic (EEG) network analysis allows dynamic brain connectivity to be frozen, and that this is successful in increasing classification accuracy when EEG signals are used together with neuropsychological tests. In conclusion, this study sought to evaluate the therapeutic potential of rTMS using an innovative protocol on cognitive performances in AD treatment. Using an SVM-based classifier on EEG data, we obtained excellent sensitivity = (97%±3%), specificity = (97%±2%), and accuracy = (98%±2%), with AUC= (0.98±0.05) for the classification of healthy controls and AD patients. We have established, to our knowledge, a unique modulation of pulse train, interpulse intervals, and pulse width in rTMS protocol, which will potentiate its therapeutic response. Further, we adopted the Common Mode Features (CMF) approach to delineate common biomarkers between Alzheimer's disease and Parkinson's disease as well as between Huntington's Disease with Amyotrophic Lateral Sclerosis. This method can improve SVM classifier performance by securing diagnostic as well as pan-condition biomarkers and therefore could enhance classification power in a clinical setting. This study was conducted with a total sample of 59 subjects (34 healthy, and 25 AD), proving that rTMS combined with EEG and machine learning can serve as an inexpensive and non-invasive individualized approach to diagnosis improvement or treatment augmentation in cases of Alzheimer's disease.
لیست مقالات
لیست مقالات بایگانی شده
مبدل DC/DC افزاینده شبهرزونانسی مبتنی بر ضربکنندهی ولتاژ ترکیبی با کلیدزنی نرم و بهرهی ولتاژ بالا
کوشا چوبداری عمران - رضا بیرانوند
Design and Implementation of a Flexible CNN Accelerator for Fast Real-Time Object Detection on FPGA
Emadodin Sakhaee - Mahdi Kalbasi
Superimposed Channel Estimation in OTFS Modulation Using Compressive Sensing
Omid Abbassi Aghda - Mohammad Javad Omidi - Hamid Saeedi-sourck
Outage Analysis of Distributed Relaying NOMA in Cognitive Radio Networks
Zahra Doorbash - Ali Jamshidi
Flexible Microgrid Scheduling with the Presence of Renewable Energy Resources
Mahdi Rahimi - Fatemeh Jahanbani Ardakani - Ali Reza Rahimi
حسگر ضریب شکست مبتنی بر فانو رزونانس در موجبرهای فلز- عایق- فلز، با رزوناتور صفحهای تزویج شده از جانب
تورج هاشمی - نسرین عبدالهی برازجان - عباس علی قنبری
بازسازی تصاویر رادار دهانه مصنوعی با استفاده از نمایش تنک مبتنی بر گروه
محبوبه خدرزاده - صادق صمدی
Joint User Association and UAV Location Optimization for Two-Tired Visible Light Communication Networks
Alireza Qazavi - Foroogh Sadat Tabataba - Mehdi Naderi Soorki
Bidirectional DISO DC-DC Converter Based on Fixed-Frequency Sliding Mode Control Strategy
Amirhosein Hoseini - Saeed Hosseinnattaj - Jafar Adabi
طراحی و ساخت یک سیستم مخابرات نور مرئی مبتنی بر دوربین
شادی خسروی - فروغ السادات طباطباء - شهاب الدین رحمانیان
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3