0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A New Protocol to Improve Effect of repetitive Transcranial Magnetic Stimulation in Treatment of Alzheimer's Disease
نویسندگان :
Ali Abedi
1
Gholamreza Moradi
2
Reza Sarraf Shirazi
3
Mehran Jahed
4
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
4- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
repetitive Transcranial Magnetic Stimulation،Machine Learning،Alzheimer Disease،Support Vector Machine،Electroencephalography
چکیده :
Despite significant breakthroughs in the clinical and instrumental evaluation of Alzheimer's Disease (AD) diagnosis, as well as therapeutic efficacy achieved to date, we still face challenges for early public classification. Recent studies show that the use of electroencephalographic (EEG) network analysis allows dynamic brain connectivity to be frozen, and that this is successful in increasing classification accuracy when EEG signals are used together with neuropsychological tests. In conclusion, this study sought to evaluate the therapeutic potential of rTMS using an innovative protocol on cognitive performances in AD treatment. Using an SVM-based classifier on EEG data, we obtained excellent sensitivity = (97%±3%), specificity = (97%±2%), and accuracy = (98%±2%), with AUC= (0.98±0.05) for the classification of healthy controls and AD patients. We have established, to our knowledge, a unique modulation of pulse train, interpulse intervals, and pulse width in rTMS protocol, which will potentiate its therapeutic response. Further, we adopted the Common Mode Features (CMF) approach to delineate common biomarkers between Alzheimer's disease and Parkinson's disease as well as between Huntington's Disease with Amyotrophic Lateral Sclerosis. This method can improve SVM classifier performance by securing diagnostic as well as pan-condition biomarkers and therefore could enhance classification power in a clinical setting. This study was conducted with a total sample of 59 subjects (34 healthy, and 25 AD), proving that rTMS combined with EEG and machine learning can serve as an inexpensive and non-invasive individualized approach to diagnosis improvement or treatment augmentation in cases of Alzheimer's disease.
لیست مقالات
لیست مقالات بایگانی شده
تولید پایگاه داده مصنوعی برای مقره های الکتریکی از روی دادههای تصویری با استفاده از شبکههای مولد تخاصمی
امیرحسین جراره - ابولفضل منافی - سعید شمقدری
طراحی لایه Max-Pooling نوری مجتمع مبتنی بر Ge2Sb2Te5 برای شبکه های عصبی پیچشی نوری
سمانه امیری - دکتر مهدی میری
Application of Transfer Learning in Optimized Filter- Bank Regularized CSP to Classification of EEG Signals with Small Dataset
M. Moein Esfahani - Hossein Sadati
Design of Fresnel-Region Millimeter-Wave Metasurface Beam Shaper Using Deep Learning
Mohammad Hossein Koohi Ghamsari - Ehsan Imanbeygi - Mehdi Ahmadi-Boroujeni
A Bidirectional Transformerless Direct AC-AC Dynamic Voltage Restorer with Extended Compensation Range and Up/Down Capability
ُSeyed Mohsen Mortazavi - MohammadHadi Mokhtari - Mohammad Reza Zolghadri
Fully Soft-Switched Quadratic High Step-Up DC-DC Converter with a Single Switch and Low Input Current Ripple for Renewable Energy Applications
Ali Nadermohammadi - Hamed Abdi - Pouya Abolhassani - Seyed Hossein Hosseini - Mehran Sabahi - Naghi Rostami
Stability Analysis for the Non-linear Model Predictive Control of a Flexible Joint Manipulator with Dynamics Uncertainties
Mohamadreza Satvati - Hossein Karimpour - Keivan Torabi - Mohammad Motaharifar
ساخت حسگر گاز بر پایه ی گرافن اکساید و سیلیکون متخلخل
سیده صفیه رضایی - مینا امیر مزلقانی
بررسی اثر فیدبک نوری بر مشخصه های دینامیکی لیزرهای قفل مد سیلیکونی
محمد شکرپور - محمد حسن یاوری
ساخت حسگر مقاومتی گاز سولفید هیدروژن با استفاده از ترکیب نانوذرات اکسید تیتانیوم و گرافن اکسید کاهش یافته
محمد دیانتی - سمانه حامدی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4