0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A New Protocol to Improve Effect of repetitive Transcranial Magnetic Stimulation in Treatment of Alzheimer's Disease
نویسندگان :
Ali Abedi
1
Gholamreza Moradi
2
Reza Sarraf Shirazi
3
Mehran Jahed
4
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
4- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
repetitive Transcranial Magnetic Stimulation،Machine Learning،Alzheimer Disease،Support Vector Machine،Electroencephalography
چکیده :
Despite significant breakthroughs in the clinical and instrumental evaluation of Alzheimer's Disease (AD) diagnosis, as well as therapeutic efficacy achieved to date, we still face challenges for early public classification. Recent studies show that the use of electroencephalographic (EEG) network analysis allows dynamic brain connectivity to be frozen, and that this is successful in increasing classification accuracy when EEG signals are used together with neuropsychological tests. In conclusion, this study sought to evaluate the therapeutic potential of rTMS using an innovative protocol on cognitive performances in AD treatment. Using an SVM-based classifier on EEG data, we obtained excellent sensitivity = (97%±3%), specificity = (97%±2%), and accuracy = (98%±2%), with AUC= (0.98±0.05) for the classification of healthy controls and AD patients. We have established, to our knowledge, a unique modulation of pulse train, interpulse intervals, and pulse width in rTMS protocol, which will potentiate its therapeutic response. Further, we adopted the Common Mode Features (CMF) approach to delineate common biomarkers between Alzheimer's disease and Parkinson's disease as well as between Huntington's Disease with Amyotrophic Lateral Sclerosis. This method can improve SVM classifier performance by securing diagnostic as well as pan-condition biomarkers and therefore could enhance classification power in a clinical setting. This study was conducted with a total sample of 59 subjects (34 healthy, and 25 AD), proving that rTMS combined with EEG and machine learning can serve as an inexpensive and non-invasive individualized approach to diagnosis improvement or treatment augmentation in cases of Alzheimer's disease.
لیست مقالات
لیست مقالات بایگانی شده
Robot-Assisted Rehabilitation with Optimal Impedance: Using an $\mathcal{EKF}$-Based $\mathcal{L}asso-\mathcal{MPC}$
Hossein Ahmadian - Iman Sharifi - Heidar Ali Talebi
بررسی خواص حسگری نانوکامپوزیت پلی آنیلین / اکسید وانادیوم 〖(V〗_2 O_5) نسبت به گاز اتانول در دمای اتاق
محمد حسین سعادتمند - محمد حسین شیخی
Optimal Sizing and Placing of Capacitors in Distribution Networks in the Presence of Three-Phase Induction Motors Using Genetic Algorithm
Seyed Amir Hossein Mohamadi - Seyed Amir Mohammad Lahaghi - Shayan Nazari - Behrooz Zaker
Dynamic Wide Area Situational Awareness: Practical Experience
Maghsoud Mokhtari - Mostafa Rajabi Mashhadi - Mehdi Moghimzadeh - Maziyar Jamshidi - Mehdi Baligh
ارزیابی کیفیت و موفقیت های پیوند کلیه
علی رفیعی پور - بهزاد خلجی امامزاده عباسی - زینب زالی - مسعودرضا هاشمی
40Hz Auditory Entrainment Promotes Synchronization Between Frontal and Parietal Regions of the Brain
Mojtaba Lahijanian - Hamid Aghajan
بازسازی تصاویر رادار دهانه مصنوعی با استفاده از نمایش تنک مبتنی بر گروه
محبوبه خدرزاده - صادق صمدی
CT Super-Resolution Using Arbitrary Scale Diffusion Model
Mahsa Nadafi Ghahnavieh - Saeed Masoudnia - Hamid Soltanian-Zadeh
Average Secrecy Capacity Performance Analysis for SWIPT-Based SIMO Underlay Cognitive Radio
Mohammad Javad Saber1 - Seyedeh Maryam Mazloum - Seyed Mohammad Sajad Sadough
Kickback noise reduction and offset cancellation technique for dynamic latch comparator
Mansoure Yousefirad - Mohammad Yavari
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2