0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A New Protocol to Improve Effect of repetitive Transcranial Magnetic Stimulation in Treatment of Alzheimer's Disease
نویسندگان :
Ali Abedi
1
Gholamreza Moradi
2
Reza Sarraf Shirazi
3
Mehran Jahed
4
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
4- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
repetitive Transcranial Magnetic Stimulation،Machine Learning،Alzheimer Disease،Support Vector Machine،Electroencephalography
چکیده :
Despite significant breakthroughs in the clinical and instrumental evaluation of Alzheimer's Disease (AD) diagnosis, as well as therapeutic efficacy achieved to date, we still face challenges for early public classification. Recent studies show that the use of electroencephalographic (EEG) network analysis allows dynamic brain connectivity to be frozen, and that this is successful in increasing classification accuracy when EEG signals are used together with neuropsychological tests. In conclusion, this study sought to evaluate the therapeutic potential of rTMS using an innovative protocol on cognitive performances in AD treatment. Using an SVM-based classifier on EEG data, we obtained excellent sensitivity = (97%±3%), specificity = (97%±2%), and accuracy = (98%±2%), with AUC= (0.98±0.05) for the classification of healthy controls and AD patients. We have established, to our knowledge, a unique modulation of pulse train, interpulse intervals, and pulse width in rTMS protocol, which will potentiate its therapeutic response. Further, we adopted the Common Mode Features (CMF) approach to delineate common biomarkers between Alzheimer's disease and Parkinson's disease as well as between Huntington's Disease with Amyotrophic Lateral Sclerosis. This method can improve SVM classifier performance by securing diagnostic as well as pan-condition biomarkers and therefore could enhance classification power in a clinical setting. This study was conducted with a total sample of 59 subjects (34 healthy, and 25 AD), proving that rTMS combined with EEG and machine learning can serve as an inexpensive and non-invasive individualized approach to diagnosis improvement or treatment augmentation in cases of Alzheimer's disease.
لیست مقالات
لیست مقالات بایگانی شده
Contextual and Spectral Feature Fusion Using Local Binary Graph for Hyperspectral Images Classification
Zahra Farmahini Farahani - Hassan Ghassemian - Maryam Imani
Three-Leg AC/AC Converters :A Comprehensive Practical Overview
MohammadHadi Mokhtari - Seyed Mohsen Mortazavi - Mohammad Reza Zolghadri
Absorption Enhancement in Thin-Film Solar Cells using Integrated Photonic Topological Insulators
Mohammad Ali Shameli - Leila Yousefi
Design and Simulation of Ultra High power X-band Rotary Joint with a Matching Choke
Mohammad Bod - Seyed mohammad Hashemi
شبیه سازی رفتار و عملکرد مقره پلیمری 20 کیلوولت با اعمال آلودگی سطحی از نقطه نظر ارزیابی و سنجش جریان خزشی و ارائه الگوی معادل سازی آن
سیدمحمدعلی طباطبائی - حمید جوادی - مسعود عبدالحسین پور - فرامرز قلیچی
ساخت حسگر رطوبت مقاومتی با استفاده از نانوذره اکسید گرافن بر پایه الکترودهای شانه ای
ندا قربانی - سمانه حامدی
A New Data Delivery Approach for Blockchain based on NDN
Shah Jahan Sirat - Sadegh Dorri Nogoorani - Behzad Akbari
Analysis of the RCS of Luneburg Reflector in Bistatic Mode
Mohammad Amin Abdollahi - Gholamreza Moradi
Conversion of Linear Polarized Light-to-Orbital Angular Momentum with Variable Topological Charges, Using the Surface Plasmons of Elliptical Holes Etched in a Gold Layer
Amir Mohammad Ghanei - Abolfazl Aghili - Sara Darbari
Design and Analysis of a New Hybrid Three-Phase Multilevel Inverter with Improved Specifications
Hossein Jafari - Daryoush Nazarpour - Sajjad Golshannavaz - Ebrahim Babaei
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3