0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A New Protocol to Improve Effect of repetitive Transcranial Magnetic Stimulation in Treatment of Alzheimer's Disease
نویسندگان :
Ali Abedi
1
Gholamreza Moradi
2
Reza Sarraf Shirazi
3
Mehran Jahed
4
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
4- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
repetitive Transcranial Magnetic Stimulation،Machine Learning،Alzheimer Disease،Support Vector Machine،Electroencephalography
چکیده :
Despite significant breakthroughs in the clinical and instrumental evaluation of Alzheimer's Disease (AD) diagnosis, as well as therapeutic efficacy achieved to date, we still face challenges for early public classification. Recent studies show that the use of electroencephalographic (EEG) network analysis allows dynamic brain connectivity to be frozen, and that this is successful in increasing classification accuracy when EEG signals are used together with neuropsychological tests. In conclusion, this study sought to evaluate the therapeutic potential of rTMS using an innovative protocol on cognitive performances in AD treatment. Using an SVM-based classifier on EEG data, we obtained excellent sensitivity = (97%±3%), specificity = (97%±2%), and accuracy = (98%±2%), with AUC= (0.98±0.05) for the classification of healthy controls and AD patients. We have established, to our knowledge, a unique modulation of pulse train, interpulse intervals, and pulse width in rTMS protocol, which will potentiate its therapeutic response. Further, we adopted the Common Mode Features (CMF) approach to delineate common biomarkers between Alzheimer's disease and Parkinson's disease as well as between Huntington's Disease with Amyotrophic Lateral Sclerosis. This method can improve SVM classifier performance by securing diagnostic as well as pan-condition biomarkers and therefore could enhance classification power in a clinical setting. This study was conducted with a total sample of 59 subjects (34 healthy, and 25 AD), proving that rTMS combined with EEG and machine learning can serve as an inexpensive and non-invasive individualized approach to diagnosis improvement or treatment augmentation in cases of Alzheimer's disease.
لیست مقالات
لیست مقالات بایگانی شده
A Hybrid Data-Driven Algorithm for Real-Time Friction Force Estimation in Hydraulic Cylinders
Mohamad Amin Jamshidi - Mehrbod Zarifi - Zolfa Anvari - Hamed Ghafarirad - Mohammad Zareinejad
Robust Object Detection Against Adversarial Perturbations with Gabor Filter
Mohammad Parsa Karimi - Abdollah Amirkhani - Shahriar B. Shokouhi
Design, MATLAB Simulation, and Implementation of a Single Inductor Double Output DC-to-DC Converter with Digital Control
Arya Hosseini - Amin Siahchehreh - Samad Sheikhaei
Bidirectional DISO DC-DC Converter Based on Fixed-Frequency Sliding Mode Control Strategy
Amirhosein Hoseini - Saeed Hosseinnattaj - Jafar Adabi
ارائه چارچوب مدیریت بهینه انرژی و انعطافپذیری برای تجمیعکننده منابع انرژی پراکنده
نیلوفر پورقادری - محمود فتوحی فیروز آباد - معین معینی اقطاعی - میلاد کبیری فر
Image steganography Based on Chaos permutation, authentication and wiener deconvolution
Ali Sheidaee - Mohammad Asadpour - Leili Farzinvash
پیشبینی مسیر حرکت انسانها در محیطهای پر ازدحام
امین منافی سلطان احمدی - سمانه حسینی سمنانی
Stable Target Tracking in Wireless Sensor Networks Under Malicious Cyber Attacks
Jafar Akhondali - Mohammad Taheri
Vibration Analysis of a High-Speed Switched Reluctance Motor Considering Fast Demagnetization Voltage
Nasrin Majlesi - Amir Rashidi - Morteza Saghaian Nejad
Age of Information Optimization for Multi-hop VLC/RF IoT Sensor Networks
Hossein Khodi - Paeiz Azmi - Nader Mokari - Mohammadreza Javan - Hamid Saeedi - Murat Uysal
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2