0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
On spatiotemporal-aware deep neural networks for real-time video fire detection: empowering image-based models with temporal and spatial features of video
نویسندگان :
Mahdi Shamisavi
1
Sahar Eslami
2
Amir Jahanshahi
3
Morteza Rajabzadeh
4
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
4- دانشگاه صنعتی قوچان
کلمات کلیدی :
Fire،Deep Neural Networks،Motion،Color،Resnet50
چکیده :
Fire is one of the natural events that has various risks for humans and the environment. Therefore, reliable and early detection of fire could greatly help save lives and prevent disasters. Image-based fire detection methods can be very quick and reliable, unlike, conventional chemical-based fire detectors. Convolutional Neural networks (CNN) have shown relatively impressive accuracy in the field of fire detection in recent years. However, extracting temporal features from images by CNN Networks proves to be the main challenge. In order to introduce temporal features inside CNN, we used motion and color features to improve the accuracy of the CNN . We propose a modified Resnet50 architecture by adding temporal features with the help of a classical image processing algorithm. Our implementation and results show that our improved Resnet50 architecture outperforms original Resnet50 on test images. Our results demonstrate that the performance of Deep Neural Networks (DNNs) can be improved by employing additional temporal features. We use motion and color features to improve the DNNs model (spatiotemporal-aware) to classify fire images more accurately than basic original DNNs without additional temporal features (spatiotemporal-unaware).
لیست مقالات
لیست مقالات بایگانی شده
Multi-Agent Deployment Around a Source in the Plane Using Biased Extremum Seeking
Mohammadali Ghadiri-modarres - Mohsen Mojiri - Ehsan Fattahi
Wide-band Cloaking of Finite Length PEC Cylindrical Objects under Oblique Incidence using Multi-Layer Mantle Cloak
Alireza Moosaei - Mohammad Hasan Neshati
Establishment of a Virtual Power Plant in Grid for Maximizing Producers' Profits and Minimizing Pollutant Emissions and Investment Costs
Amir Hossein Gholami - Amir Abulfazl Suratgar - Mohammad Bagher Menhaj - Mohammad Reza Hesamzadeh
Machine Learning-based Fundamental Stock Prediction Using Companies’ Financial Reports
Hossein Rezaei - Kamran Abdi - Mohsen Hooshmand
Soft Decision Adaptive Deep Learning Detection for Enhanced Massive MIMO Performance
Farnaz Sedaghati - Mojtaba Amiri - Ali Olfat
RSF: Reinforcement learning based hybrid split and federated learning for edge computing environments
Alireza Soleimani - Negar Anabestani - Mahmoud Momtazpour
Multi-objective Optimization of Peer-to-Peer Transactions in Arizona State University’s Microgrid by NSGA II
Pourya Shirinshahrakfard - Amir Abolfazl Suratgar - Mohammad Bagher Menhaj - Gevork B. Gharehpetian
True Class-E Design For Inductive Coupling Wireless Power Transfer Applications
Ali Asghar Razavi Haeri - Aminghasem Safarian - Ali Fotowat-Ahmady
Multiphysics Analysis of HTS Transformer utilizing Stainless Steel Stabilizer on Short Circuit Condition
Ashkan Mirzaei Rajeooni - Hossein Heydari - Mohammad Khakroei - Mahdi Rahimi Pirbasti
طراحی خودرمزگذار متغیر جهت تشخیص عیب در بیرینگهای غلتشی
مریم آهنگ - مهدی علیاری شورهدلی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2