0% Complete
صفحه اصلی
/
بیست و نهمین کنفرانس مهندسی برق ایران
Automatic Classification of Parkinson’s Disease Using Best Parameters of Forward and Backward Walking
نویسندگان :
Atiye Riasi
1
Mehdi Delrobaei
2
1- دانشگاه صنعتی خواجه نصیرالدین طوسی
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
Parkinson’s disease, classification, gait, machine learning, forward walking, backward walking
چکیده :
This study aims to investigate the discriminative gait features of forward and backward walking to provide a combination of the most relevant parameters. These parameters would potentially help the clinicians to follow quantitative methods in diagnosing Parkinson's disease. In this paper, the statistically significant gait features are narrowed down from 46 to 30, 20, 10, and 5, using the minimal-redundancy-maximal-relevance feature selection method. The selected features were then fed to Random Forest and Support Vector Machine classifiers to evaluate the ability of features in discriminating Parkinson's disease and control groups. According to the results, we selected to use Random Forest classifier in our algorithm. Applying our algorithm on a database comprising 62 Parkinson's disease patients and 11 control participants, we achieved the average accuracy of 93.9 and 88 in 10 iterations of Random Forest and Support Vector Machine, respectively. Using the minimal-redundancy-maximal-relevance feature selection and mean decrease in accuracy and Gini index of the Random Forest classifier, we find the critical role of backward walking parameters like the average of stance time, step length, and swing time in classification results.
لیست مقالات
لیست مقالات بایگانی شده
Family of Soft-Switched Single-Switch Switched-Resonator Converters with Low Component Count
Maryam Hajilou - Siamak Khalili - Hosein Farzanehfard
بکارگیری یادگیری عمیق در ارزیابی به هنگام پایداری ولتاژ کوتاه مدت با استفاده از داده های اندازه گیری فازوری
امیرحسین باباعلی - محمدتقی عاملی
Enhancing Disaster Communication: Multi-UAV Optimization for Efficient Coverage
Amirhossein Solati - Javad Zeraatkar Moghaddam - Mehrdad Ardebilipour
MAD-TI: Meta-path Aggregated-Graph Attention Network for Drug Target Interaction Prediction
Reza Shami Tanha - Maryam Sadighian - Arash Zabihian - Mohsen Hooshmand - Mohsen Afsharchi
Dynamic Gait Analysis Using Hybrid Neural Networks: Online classification and Prediction of Locomotion Modes
Samira Dehghanian - Hamed Jalaly Bidgoly
DRL-based Beamforming and Phase Design for non-ideal RIS
Farimehr Zohari - Meysam Ahmadkhani - Fatemeh Shabanali - Mehrdad Ardebilipour
Design, Prototyping and Performance Analysis of a Barometric-Based Soft Force Sensor
Mohammad Reza SheykhAzimi - Mohammad Reza Nayeri - Mehdi Tale Masouleh - Ahmad Kalhor
Classifying Human Spatial Navigation Anxiety Using Electrooculography Signals and Machine Learning Techniques
Saeed Mousavi - Sara Ashrafi - Mehdi Delrobaei
Fixed-Time Nonlinear Observer for a Class of Applicable Nonlinear Systems
علی ابویی - Mohammad Hadi Rezaei
Optimal Receiver Placement in Distributed Passive Sensor Networks: A DRL Approach
Hossein Nikaein - Mohammad Reza Jabbari - Maedeh Kadkhodaie Elyaderani - Saeed Gazor
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1