0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
A Deep Learning-Based Model for House Number Detection And Recognition
نویسندگان :
Roghaiyeh Tayefeh Younesi
1
Jafar Tanha
2
Samaneh Namvar
3
Sahar Hassanzadeh Mostafaei
4
1- دانشگاه تبریز
2- دانشگاه تبریز
3- دانشگاه تبریز
4- دانشگاه تبریز
کلمات کلیدی :
Image Recognition،Image Detection،Data Augmentation،CNN،LSTM،Multi Digit
چکیده :
Abstract— Detection and recognition of information from natural images pose significant challenges in computer vision, with far-reaching implications for future applications. In recent years, the application of deep learning techniques to real-world image datasets has yielded notable achievements in the realms of recognition, detection, and pattern recognition. In this paper, we specifically tackle the challenge of number detection and recognition in real-world scenes by proposing deep learning models on the Street View House Numbers (SVHN) dataset. In the proposed models, to boost accuracy, we applied preprocessing steps to the training dataset. These steps included data augmentation techniques such as resizing, random rotation, random horizontal flip, angle degree changes, and optimization of hyperparameters and model layers. In the initial model, we utilized a fully connected Convolutional Neural Network (CNN) model on sequences of digit images, achieving an impressive accuracy of 95 percent. Subsequently, a Convolutional-Long Short-Term Memory (CNN-LSTM) model was designed for temporal information modeling, utilizing a combination of CNN and LSTM layers that also achieved an accuracy of 93 percent. These models demonstrate high performance in recognizing numbers in complex and real-world environments. Our results underscore the significant enhancement in the accuracy of number recognition in real-world images achieved on the SVHN dataset by combining CNN models with data augmentation. We also compare the results of our proposed models with other state-of-the-art methods.
لیست مقالات
لیست مقالات بایگانی شده
The Comparison of MXene and Graphene-Based Antennas for 5G/6G Communications
Javad Shokri Seyyedi - Gholamreza Moradi - Reza Sarraf Shirazi - Sepehr Sahab - Abolfazl Ebrahimpour
Modeling and control of two PPR cooperative manipulations with a passive joint
Hassan Khosravi - Farhad Fani Saberi - Rasul Fesharakifard
بررسی اثر پیرشدگی بر میدان الکتریکی و جریان نشتی در مقرههای پلیمری آلوده با شبیهسازی به روش اجزای محدود
محمد گودرزی - سید محمد شهرتاش - احمد غلامی
Modeling and Analysis of Segmental Translator Permanent Magnet Linear Switched Reluctance Motor
Milad Golzarzadeh - Hashem Oraee - Babak Ganji
Online Estimation of Power System Inertia Using Electromechanical Oscillation Parameters with High Penetration of Renewables
Shwan Sheikhahmadi - Ali Hesami Naghshbandy - Ayda Faraji
Reliability-Based Design of Time-Varying Electricity Tariff
Mohammad Rastegar - Nima Sarajpoor
Joint Fairness, Fragmentation, and Physical Layer Impairments Aware Routing, Spectrum and Modulation Level Allocation in Elastic Optical Networks
Hassan Khanahmadzadeh - Arash Rezaee - Lotfollah Beygi
تشخیص حضور انسان در خانه های هوشمند با استفاده از شبکه ی بی سیم محلی
امیرمحمد بصیرت - نغمه سادات مویدیان
Three-Winding Coupled-Inductor-based Boost Converter with Voltage Multiplier Cell and Active Clamp Circuit for Low-Power Photovoltaic Application
Danesh Amani - Ali Valizadeh - Reza Beiranvand - Ali Yazdian Varjani
Low-cost dielectrophoresis-based microfluidic chip for label-free particle separation with 3D electrodes
Fatemeh Esmaeili - Zeynab Alipour - Mehdi Fardmanesh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3