0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
A Deep Learning-Based Model for House Number Detection And Recognition
نویسندگان :
Roghaiyeh Tayefeh Younesi
1
Jafar Tanha
2
Samaneh Namvar
3
Sahar Hassanzadeh Mostafaei
4
1- دانشگاه تبریز
2- دانشگاه تبریز
3- دانشگاه تبریز
4- دانشگاه تبریز
کلمات کلیدی :
Image Recognition،Image Detection،Data Augmentation،CNN،LSTM،Multi Digit
چکیده :
Abstract— Detection and recognition of information from natural images pose significant challenges in computer vision, with far-reaching implications for future applications. In recent years, the application of deep learning techniques to real-world image datasets has yielded notable achievements in the realms of recognition, detection, and pattern recognition. In this paper, we specifically tackle the challenge of number detection and recognition in real-world scenes by proposing deep learning models on the Street View House Numbers (SVHN) dataset. In the proposed models, to boost accuracy, we applied preprocessing steps to the training dataset. These steps included data augmentation techniques such as resizing, random rotation, random horizontal flip, angle degree changes, and optimization of hyperparameters and model layers. In the initial model, we utilized a fully connected Convolutional Neural Network (CNN) model on sequences of digit images, achieving an impressive accuracy of 95 percent. Subsequently, a Convolutional-Long Short-Term Memory (CNN-LSTM) model was designed for temporal information modeling, utilizing a combination of CNN and LSTM layers that also achieved an accuracy of 93 percent. These models demonstrate high performance in recognizing numbers in complex and real-world environments. Our results underscore the significant enhancement in the accuracy of number recognition in real-world images achieved on the SVHN dataset by combining CNN models with data augmentation. We also compare the results of our proposed models with other state-of-the-art methods.
لیست مقالات
لیست مقالات بایگانی شده
Error Probability Analysis of Non-Orthogonal Multiple Access
Rozita Shafie - AliAkbar Tadaion - Zolfa Zeinalpour-Yazdi
Robust IDA-PBC for a Spatial Underactuated Cable Driven Robot with Bounded Inputs
Mohammad Reza Jafari Harandi - S. Ahmad Khalilpour - Hamid Taghirad
The Conduction Mechanism in Micron-Thick ZnO Layers Grown on Si Substrates by Spray Pyrolysis
Mohsen Gharesi - Alireza Karimpour - Reza Razmand - Faramarz Hossein-Babaei
Precise model extraction for Li-Ion batteries using segmented Columb counting and Kalman filtering
Ali Fotokkiani - Ali Ghanbarian - Amirhossein Esteghamat - Ali Fotowat-Ahmady - Farzad Tahami
Absorption Enhancement in Thin-Film Solar Cells using Integrated Photonic Topological Insulators
Mohammad Ali Shameli - Leila Yousefi
Differentiating Brain Connectivity Networks in ADHD and Normal Children using EEG
Roqaie Moqadam - Nazila Loghmani - Alireza Khorrami Moghaddam - Armin Allahverdy
An Iterative Approach to Enhance the Accuracy of TDOA-Based Localization by Averaging and Reducing Noise
Reza Bahrampour - Mohammad Hossein Madani - Hossein Bahramgiri
Speech Emotion Recognition Using Transfer Learning and Self-Supervised Speech Representation Learning
Marziye Azad - Babak Nasersharif
Numerical study of different pillar shapes using deterministic lateral displacement method for particle separation
Mohammad Mahdi Eskandari Sani - Mahdi Aliverdinia - Mahdi Moghimi Zand
Incentive-based Demand Response Economic Model for Peak Shaving Considering Load Serving Entity Profit Maximization
Nasim EslamiNia - Habib RajabiMashhdi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0