0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
A Deep Learning-Based Model for House Number Detection And Recognition
نویسندگان :
Roghaiyeh Tayefeh Younesi
1
Jafar Tanha
2
Samaneh Namvar
3
Sahar Hassanzadeh Mostafaei
4
1- دانشگاه تبریز
2- دانشگاه تبریز
3- دانشگاه تبریز
4- دانشگاه تبریز
کلمات کلیدی :
Image Recognition،Image Detection،Data Augmentation،CNN،LSTM،Multi Digit
چکیده :
Abstract— Detection and recognition of information from natural images pose significant challenges in computer vision, with far-reaching implications for future applications. In recent years, the application of deep learning techniques to real-world image datasets has yielded notable achievements in the realms of recognition, detection, and pattern recognition. In this paper, we specifically tackle the challenge of number detection and recognition in real-world scenes by proposing deep learning models on the Street View House Numbers (SVHN) dataset. In the proposed models, to boost accuracy, we applied preprocessing steps to the training dataset. These steps included data augmentation techniques such as resizing, random rotation, random horizontal flip, angle degree changes, and optimization of hyperparameters and model layers. In the initial model, we utilized a fully connected Convolutional Neural Network (CNN) model on sequences of digit images, achieving an impressive accuracy of 95 percent. Subsequently, a Convolutional-Long Short-Term Memory (CNN-LSTM) model was designed for temporal information modeling, utilizing a combination of CNN and LSTM layers that also achieved an accuracy of 93 percent. These models demonstrate high performance in recognizing numbers in complex and real-world environments. Our results underscore the significant enhancement in the accuracy of number recognition in real-world images achieved on the SVHN dataset by combining CNN models with data augmentation. We also compare the results of our proposed models with other state-of-the-art methods.
لیست مقالات
لیست مقالات بایگانی شده
The Use of Additive Decomposition and Deep Neural Network for Photovoltaic Power Forecasting
Fariba Dehghan - Mohsen Parsa Moghaddam - Maryam Imani
Sensitivity Analysis of Power Production and Efficiency in Shahid Mofateh Hamedan Power Plant: A Comparative Study of Operational Indicators
Mahdi Aliyari-Shoorehdeli - Aryan Isapour
بکارگیری یادگیری عمیق در ارزیابی به هنگام پایداری ولتاژ کوتاه مدت با استفاده از داده های اندازه گیری فازوری
امیرحسین باباعلی - محمدتقی عاملی
ساخت حسگر رطوبت مقاومتی با استفاده از نانوذره اکسید گرافن بر پایه الکترودهای شانه ای
ندا قربانی - سمانه حامدی
Adaptive Smooth Super Twisting Sliding Mode Control for Parkinson's Tremor Treatment
Reyhaneh Valibeik - ّFatemeh Jahangiri - Mostafa Abedi
An Improved Authentication & Key Exchange Protocol Based on ECDH for WSNs
Sina Baghbanijam - Hanie Sanaei - Mahdi Farajzadeh
Multi-objective Optimization of Peer-to-Peer Transactions in Arizona State University’s Microgrid by NSGA II
Pourya Shirinshahrakfard - Amir Abolfazl Suratgar - Mohammad Bagher Menhaj - Gevork B. Gharehpetian
Age of Information Optimization for Multi-hop VLC/RF IoT Sensor Networks
Hossein Khodi - Paeiz Azmi - Nader Mokari - Mohammadreza Javan - Hamid Saeedi - Murat Uysal
A compact 5G MIMO antenna with reduced mutual coupling
Marziyeh Amiri - Ali Ghafoorzadeh-yazdi - Abbas-Ali Heidari
Design and Demonstration of a Novel Microfluidic Channel for Trapping Circulating Tumor Cells with Magnetophoresis
Atin Bakhshi - Seyed Ehsan Hosseininasab - Vahid Ghafouri - Mehdi Rahmanian - Majid Badiei Rostami
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2