0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
A Deep Learning-Based Model for House Number Detection And Recognition
نویسندگان :
Roghaiyeh Tayefeh Younesi
1
Jafar Tanha
2
Samaneh Namvar
3
Sahar Hassanzadeh Mostafaei
4
1- دانشگاه تبریز
2- دانشگاه تبریز
3- دانشگاه تبریز
4- دانشگاه تبریز
کلمات کلیدی :
Image Recognition،Image Detection،Data Augmentation،CNN،LSTM،Multi Digit
چکیده :
Abstract— Detection and recognition of information from natural images pose significant challenges in computer vision, with far-reaching implications for future applications. In recent years, the application of deep learning techniques to real-world image datasets has yielded notable achievements in the realms of recognition, detection, and pattern recognition. In this paper, we specifically tackle the challenge of number detection and recognition in real-world scenes by proposing deep learning models on the Street View House Numbers (SVHN) dataset. In the proposed models, to boost accuracy, we applied preprocessing steps to the training dataset. These steps included data augmentation techniques such as resizing, random rotation, random horizontal flip, angle degree changes, and optimization of hyperparameters and model layers. In the initial model, we utilized a fully connected Convolutional Neural Network (CNN) model on sequences of digit images, achieving an impressive accuracy of 95 percent. Subsequently, a Convolutional-Long Short-Term Memory (CNN-LSTM) model was designed for temporal information modeling, utilizing a combination of CNN and LSTM layers that also achieved an accuracy of 93 percent. These models demonstrate high performance in recognizing numbers in complex and real-world environments. Our results underscore the significant enhancement in the accuracy of number recognition in real-world images achieved on the SVHN dataset by combining CNN models with data augmentation. We also compare the results of our proposed models with other state-of-the-art methods.
لیست مقالات
لیست مقالات بایگانی شده
روشی نوین مبتنی بر سیمپلکسهای متوالی برای غلبه بر چالشهای حل پخش بار بهینه
فاطمه زاده محمدی - حسین شریف زاده
A New Atrial Fibrillation Detection System with Noise Cancellation and Signal Annotation
Amirali Banaei Kashani - Bardia Baraeinejad - Mohammad Fakharzadeh
Joint Request Aggregation and Content Caching at the Edge via Named Data Networking
Parisa Bakhtou - Siavash Khorsandi
Design and Demonstration of a Novel Microfluidic Channel for Trapping Circulating Tumor Cells with Magnetophoresis
Atin Bakhshi - Seyed Ehsan Hosseininasab - Vahid Ghafouri - Mehdi Rahmanian - Majid Badiei Rostami
Flexible Generation Expansion Planning Considering Representative Days of Load and Renewable Variations
Peyman Amirian - Zeinab Maleki - Mohammad-Amin Pourmoosavi - Turaj Amraee
Forecasting Crude Oil Prices using improved deep belief network (IDBN) and long-term short-term memory network (LSTM)
Mohammad Mahdi Lotfi Heravi - Mahsa Khorrampanah - Monireh Houshmand
RDOD: A Robust Distance-based Technique for Outlier Detection
Reza Heydari gharaei - Hossein Nezamabadi-pour
Multi-Machine Traction Drive Based on Parallel Connected Synchronous Machines
Hassan Mohammadi Pirouz
طراحی قانون رویداد-تحریک دینامیکی برای سیستم های سینگولار خطی به منظور کاهش تعداد بروزرسانی
سیدمحمدرضا احمدانجوی - طاهره بینازاده
Application of Metaheurestic Optimization Algorithms for Feature Selection in Text Classification
Elham Nazari - Nafise Haghshenas - Alireza Basiri - Mohammad Reza Ahmadzadeh
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1