0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Sparsity Domain Smoothing Based Thresholding Recovery Method for OFDM Sparse Channel Estimation
نویسندگان :
Mohammad Hossein Bahonar
1
Reza Ghaderi Zefreh
2
Rouhollah Amiri
3
1- Isfahan University of Technology
2- Isfahan University of Technology
3- Sharif university of technology
کلمات کلیدی :
OFDM, sparse channel estimation, sparse domain smoothing, thresholding
چکیده :
Due to the ever increasing data rate demand of beyond 5G networks and considering the wide range of Orthogonal Frequency Division Multipllexing (OFDM) technique in cellular systems, it is critical to reduce pilot overhead of OFDM systems in order to increase data rate of such systems. Due to sparsity of multipath channels, sparse recovery methods can be exploited to reduce pilot overhead. OFDM pilots are utilized as random samples for channel impulse response estimation. We propose a three-step sparsity recovery algorithm which is based on sparsity domain smoothing. Time domain residue computation, sparsity domain smoothing, and adaptive thresholding sparsifying are the three-steps of the proposed scheme. To the best of our knowledge, the proposed sparsity domain smoothing based thresholding recovery method known as SDS-IMAT has not been used for OFDM sparse channel estimation in the literature. Pilot locations are also derived based on the minimization of the measurement matrix coherence. Numerical results verify that the performance of the proposed scheme outperforms other existing thresholding and greedy recovery methods and has a near-optimal performance. The effectiveness of the proposed scheme is shown in terms of mean square error and bit error rate.
لیست مقالات
لیست مقالات بایگانی شده
On the Interaction Between Meteorological Conditions and Performance Optimization in MISO Free-Space Optical Communication
Meysam Ghanbari - Mahdis Saghaee Jahed - Seyed Mohammad Sajad Sadough
بررسی اثر نوسانات حرکتی در ارتباطات بیسیم مبتنی بر پهپاد حامل سطوح بازتابی هوشمند
معین درون پرور - نسیم محمدی - سیدمحمد رضوی زاده
Enhancing SCGAN’s Disentangled Representation Learning with Contrastive SSIM Similarity Constraints
Iman Yazdanpanah - Ali Eslamian
A Low-Power High-Precision Low-Dropout Regulator For Biomedical Implants
Vahid Baghbani khezerlu - Mohammad Yavari - Mortaza Mojarad
تدوین استراتژی تعمیرات و نگهداری مبتنی بر قابلیت اطمینان در شبکه ی انتقال قدرت
سید سینا طاهری اطاقسرا - مسعود اصغری قراخیلی
Kernel-Based Embedded Feature Selection for Motor Imagery Based BCI
Mehdi Kamandar
TELLM: Advancements in Knowledge Incorporation and Task-specific Enhancements of Large Language Models
Fatemeh Feizi - Amirhossein Hossein Nia - MohammadMahdi Hemmatyar - Fatemeh Rahimi - Farhoud Jafari Kaleibar
Efficient Full Adders for Approximate Arithmetic Units in the Image Processing Applications
Bahram Rashidi
Forecasting Tehran Stock Exchange Trend with Time Series Analysis, Fundamental Data, and Sentiment Analysis in News
Mahdi Shamisavi - Amir Jahanshahi
A New High Voltage Gain Non-isolated DC-DC Converter
Ahmadreza Ghanaatian - Reza Takarli - Abolfazl Vahedi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1