0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Integrating Model-Agnostic Meta-Learning with Advanced Language Embeddings for Few-Shot Intent Classification
نویسندگان :
Ali Rahimi
1
Hadi Veisi
2
1- دانشگاه تهران
2- دانشگاه تهران
کلمات کلیدی :
Few-shot learning،Model-Agnostic Meta-Learning (MAML)،Intent classification،Natural Language Processing (NLP)،BERT،LaBSE،Ada
چکیده :
Addressing the challenge of few-shot learning in intent classification tasks within Natural Language Processing (NLP), this study introduces a novel approach that harnesses the robust adaptation capabilities of Model-Agnostic Meta-Learning (MAML) combined with sophisticated language embeddings, namely BERT, LaBSE, and ada-002. The need for models to understand and classify intents with minimal training data is imperative to progress in creating versatile, responsive AI systems. We propose a methodology that leverages the generalizability of MAML and the deeply contextualized representations offered by state-of-the-art embeddings, allowing for significant improvements in Accuracy and data efficiency. We evaluate our approach using the CLINC150 dataset across a series of N-way \& K-shot configurations, demonstrating the efficacy of the proposed model with varying numbers of intent classes and examples. Our findings reveal that the ada-002 embeddings consistently provide superior performance in both 1-shot and 5-shot settings across all class configurations tested, indicating their potent synergy with meta-learning strategies. Specifically, openai-ada-002 achieved an accuracy of 97.07\% in the 5-Way \& 1-Shot setting and 99.1\% in the 5-Way \& 5-Shot setting. The outcomes of our experimental evaluation suggest that our approach also illuminates the potential of harmonious integration of cutting-edge language embeddings with meta-learning frameworks. This work provides a solid foundation for further exploration in optimizing few-shot intent classification, paving the way for creating AI systems proficient in understanding user intents with minimal exemplars. This research lays the groundwork for future advancements in few-shot intent classification, enabling the development of AI systems that require minimal training data to interpret user intent accurately.
لیست مقالات
لیست مقالات بایگانی شده
Comparison of the MRT and ZF Precoding in Massive MIMO Systems from Energy Efficiency Viewpoint
Mahdi Nangir - Abdolrasoul Sakhaei Gharagezlou - Nima Imani
A Transformerless Single-Switch DC-DC Boost Converter Suitable for Renewable Energy Applications
Saed Mahmoud Alilou - Sasan Ahmadi - Mohammad Maalandish - Seyed Hossein Hosseini
Cloudy: A Pythonic Cloud Simulator
Ahmad Siavashi - Mahmoud Momtazpour
Blind angle and angular range detection in planar and limited-view geometries for photoacoustic tomography
Soheil Hakakzadeh - Zahra Kavehvash
بهبود بازدهی انرژی در سیستم های بدون سلول با آنتن های انبوه مبتنی بر مخابرات پهپادها به کمک انتقال همزمان توان و اطلاعات به صورت بی سیم
امیرحسین زحمتی - محسن اسلامی
Application of Artificial Neural Network on Diagnosing Location and Extent of Disk Space Variations in Transformer Windings Using Frequency Response Analysis
Reza Behkam - Hossein Karami - Mahdi Salay Naderi - Gevork Gharehpetian
Synergy of Deep Learning and Artificial Potential Field Methods for Robot Path Planning in the Presence of Static and Dynamic Obstacles
Mohammad Amin Basiri - Shirin Chehelgami - Erfan Ashtari - Mehdi Tale Masouleh - Ahmad Kalhor
راهبرد بهینه خرده فروش در شبکه توزیع برق با در نظر گرفتن اثر پاسخ گویی بار
امیرحسین مدبری فر - حبیب رجبی مشهدی
ساخت و مشخصه یابی حسگر گاز QCM با پوشش نیترات لانتانیوم برای آشکارسازی بخار اسید هیدروفلوئوریک
زهرا خوش بین - وحید غفاری نیا
تشخیص و مقیاس بندی شدت افسردگی براساس روشهای یادگیری ماشین و با استفاده از معیارهای خطی، غیرخطی و آماری محاسبه شده در سیگنالهای الکتروانسفالگرام
پریسا رئوف امامزاده هاشمی - وحید شالچیان - رضا رستمی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2