0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Integrating Model-Agnostic Meta-Learning with Advanced Language Embeddings for Few-Shot Intent Classification
نویسندگان :
Ali Rahimi
1
Hadi Veisi
2
1- دانشگاه تهران
2- دانشگاه تهران
کلمات کلیدی :
Few-shot learning،Model-Agnostic Meta-Learning (MAML)،Intent classification،Natural Language Processing (NLP)،BERT،LaBSE،Ada
چکیده :
Addressing the challenge of few-shot learning in intent classification tasks within Natural Language Processing (NLP), this study introduces a novel approach that harnesses the robust adaptation capabilities of Model-Agnostic Meta-Learning (MAML) combined with sophisticated language embeddings, namely BERT, LaBSE, and ada-002. The need for models to understand and classify intents with minimal training data is imperative to progress in creating versatile, responsive AI systems. We propose a methodology that leverages the generalizability of MAML and the deeply contextualized representations offered by state-of-the-art embeddings, allowing for significant improvements in Accuracy and data efficiency. We evaluate our approach using the CLINC150 dataset across a series of N-way \& K-shot configurations, demonstrating the efficacy of the proposed model with varying numbers of intent classes and examples. Our findings reveal that the ada-002 embeddings consistently provide superior performance in both 1-shot and 5-shot settings across all class configurations tested, indicating their potent synergy with meta-learning strategies. Specifically, openai-ada-002 achieved an accuracy of 97.07\% in the 5-Way \& 1-Shot setting and 99.1\% in the 5-Way \& 5-Shot setting. The outcomes of our experimental evaluation suggest that our approach also illuminates the potential of harmonious integration of cutting-edge language embeddings with meta-learning frameworks. This work provides a solid foundation for further exploration in optimizing few-shot intent classification, paving the way for creating AI systems proficient in understanding user intents with minimal exemplars. This research lays the groundwork for future advancements in few-shot intent classification, enabling the development of AI systems that require minimal training data to interpret user intent accurately.
لیست مقالات
لیست مقالات بایگانی شده
بیشینه سازی ظرفیت در رله های تمام دوطرفه تک مسیره با در نظر گرفتن اختلالات سخت افزاری
حسین حصاربنی - زهرا کشاورز گندمانی
Location of Distributed Generation in the Distribution Network concerning of Capacity Credit with the TLBO Optimization Algorithm
Mohammadali Arash - Mohammad Khakroei
Outage and Sum-Rate Analysis for mCAP-NOMA in Visible Light Communication Under Users' Mobility
Amir Oshtoudan - Seyed Mohammad Sajad Sadough
یک روش اقتصادی برای تعیین مکان بهینه ریکلوزرها در فیدرهای توزیع شعاعی با هدف بهبود قابلیت اطمینان
محمودرضا شاکرمی - میثم دوستی زاده - هومن بسطامی - مهران امیری - ابراهیم شریفی پور - شمس الدین کمالوند
جابجایی ایمبرت-فدروف نور عبوری از ساختار چندلایه ای حاوی گرافن و دیاکسید وانادیوم
رباب زادجمال سیفی - رضا عبدی قلعه - کاظم جمشیدی قلعه
Transformer-Based Unsupervised Image Registration using SSIM and Homography Loss for Steady Camera and Aerial Videos
Golnoosh Abdollahinejad - Matin Hashemi
The most descriptive surprise definition for brain’s EEG response to visual and auditory oddball tasks
Mohammad Mahdi Kiani - Zahra Mousavi - Hamid Aghajan
Evanescent-to-Propagating Wave Conversion Using Continuous High-Order Dielectric Metasurfaces
Hamid Akbari Chelaresi - Pooria Salami - Leila Yousefi
Fast and Low Power Modified Carry Look-Ahead Adder
Sanaz Salem - Amir hossein Owji
Thermo-optically Adjustment of Stimulated Brillouin Scattering in Integrated Slot Ring Resonators
Mahdi Piri - Bijan Abbasi Arand - Sayyed Reza Mirnaziry
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.7.4