0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Integrating Model-Agnostic Meta-Learning with Advanced Language Embeddings for Few-Shot Intent Classification
نویسندگان :
Ali Rahimi
1
Hadi Veisi
2
1- دانشگاه تهران
2- دانشگاه تهران
کلمات کلیدی :
Few-shot learning،Model-Agnostic Meta-Learning (MAML)،Intent classification،Natural Language Processing (NLP)،BERT،LaBSE،Ada
چکیده :
Addressing the challenge of few-shot learning in intent classification tasks within Natural Language Processing (NLP), this study introduces a novel approach that harnesses the robust adaptation capabilities of Model-Agnostic Meta-Learning (MAML) combined with sophisticated language embeddings, namely BERT, LaBSE, and ada-002. The need for models to understand and classify intents with minimal training data is imperative to progress in creating versatile, responsive AI systems. We propose a methodology that leverages the generalizability of MAML and the deeply contextualized representations offered by state-of-the-art embeddings, allowing for significant improvements in Accuracy and data efficiency. We evaluate our approach using the CLINC150 dataset across a series of N-way \& K-shot configurations, demonstrating the efficacy of the proposed model with varying numbers of intent classes and examples. Our findings reveal that the ada-002 embeddings consistently provide superior performance in both 1-shot and 5-shot settings across all class configurations tested, indicating their potent synergy with meta-learning strategies. Specifically, openai-ada-002 achieved an accuracy of 97.07\% in the 5-Way \& 1-Shot setting and 99.1\% in the 5-Way \& 5-Shot setting. The outcomes of our experimental evaluation suggest that our approach also illuminates the potential of harmonious integration of cutting-edge language embeddings with meta-learning frameworks. This work provides a solid foundation for further exploration in optimizing few-shot intent classification, paving the way for creating AI systems proficient in understanding user intents with minimal exemplars. This research lays the groundwork for future advancements in few-shot intent classification, enabling the development of AI systems that require minimal training data to interpret user intent accurately.
لیست مقالات
لیست مقالات بایگانی شده
Wideband Rat-race Hybrid Coupler Using Ridge Gap Waveguide Technology
Zahra Akhoondmahdi - Ahmad Bakhtafrouz
Network-based functional connectivity in MDD with suicide ideation before and after TMS: An fMRI case study
Moslem Khafi - Morteza Fattahi - Hamid Soltanian-Zadeh - Reza Rostami
Better Exploration In Single-Agent Q-Learning Using Controlled Linear Perturbation
Sadredin Hokmi - Mohammad Haeri
Passive and Active Rectifier Combination for Hybrid Piezoelectric and Radio Frequency Energy Harvesting System
Mohammad reza Esaei - Mostafa Noohi - Ali Mirvakili
Three-Leg AC/AC Converters :A Comprehensive Practical Overview
MohammadHadi Mokhtari - Seyed Mohsen Mortazavi - Mohammad Reza Zolghadri
Fuzzy Fractional Order Sliding Mode Controller Design for a Wind Turbine with DFIG
Mohammad Hossein Aghaseyedabdollah - Yasin Alavian - Hadi Azmi - Alireza Yazdizadeh
T-type L-2L De-Embedding Method for On-Wafer T-model Transmission Line Network
Milad Seyedi - Nasser Masoumi - Samad Sheikhaei
کنترل تشنج در مدل صرع ساز با استفاده از کنترل کننده سطح دینامیکی
مهدی کمالی دولت آبادی - مرضیه کمالی - فرزانه شایق
Improved Attention U-Net combined with Conditional Random Field for Ischemic Lesion Segmentation from Magnetic Resonance Images
Ali Rezaei - Asieh Khosravanian - Habibollah Danyali - Kamran Kazemi - Ardalan Aarabi
H_∞ Robust Constrained Control of Fuzzy-based Continuous-Time Nonlinear Systems
Mohsen Farbood - Mokhtar Shasadeghi - Taher Niknam - Behrouz Safarinejadian
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1