0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Integrating Model-Agnostic Meta-Learning with Advanced Language Embeddings for Few-Shot Intent Classification
نویسندگان :
Ali Rahimi
1
Hadi Veisi
2
1- دانشگاه تهران
2- دانشگاه تهران
کلمات کلیدی :
Few-shot learning،Model-Agnostic Meta-Learning (MAML)،Intent classification،Natural Language Processing (NLP)،BERT،LaBSE،Ada
چکیده :
Addressing the challenge of few-shot learning in intent classification tasks within Natural Language Processing (NLP), this study introduces a novel approach that harnesses the robust adaptation capabilities of Model-Agnostic Meta-Learning (MAML) combined with sophisticated language embeddings, namely BERT, LaBSE, and ada-002. The need for models to understand and classify intents with minimal training data is imperative to progress in creating versatile, responsive AI systems. We propose a methodology that leverages the generalizability of MAML and the deeply contextualized representations offered by state-of-the-art embeddings, allowing for significant improvements in Accuracy and data efficiency. We evaluate our approach using the CLINC150 dataset across a series of N-way \& K-shot configurations, demonstrating the efficacy of the proposed model with varying numbers of intent classes and examples. Our findings reveal that the ada-002 embeddings consistently provide superior performance in both 1-shot and 5-shot settings across all class configurations tested, indicating their potent synergy with meta-learning strategies. Specifically, openai-ada-002 achieved an accuracy of 97.07\% in the 5-Way \& 1-Shot setting and 99.1\% in the 5-Way \& 5-Shot setting. The outcomes of our experimental evaluation suggest that our approach also illuminates the potential of harmonious integration of cutting-edge language embeddings with meta-learning frameworks. This work provides a solid foundation for further exploration in optimizing few-shot intent classification, paving the way for creating AI systems proficient in understanding user intents with minimal exemplars. This research lays the groundwork for future advancements in few-shot intent classification, enabling the development of AI systems that require minimal training data to interpret user intent accurately.
لیست مقالات
لیست مقالات بایگانی شده
اصلاح مسیرخروجی ID FANتا دودکش اشکودا و امکان سنجی بازیابی حرارتی دود
یاشار مغمومی - فرشته صادقی
A Design Technique For Linear Desensitized LNAs
Masoumeh Sabzi - Mahmoud Kamarei - Yann Mahe - Tchanguiz Razban-Haghighi
تاثیر روشهای کاهش سناریو و عدم قطعیتهای چندمتغیره بر عملکرد هاب انرژی
مهسا نعمتی فر - حسین شریف زاده
Efficiency Enhancement of Heterojunction IBC Solar Cell: Surface Passivation
Amirmohammad Shahryari - Zohreh Golshan bafghi - Negin Manavizadeh
On the Design of Highly Efficient Harmonic Tuned Wideband Class F-1/F Power Amplifier
Mohammad Reza Zeinali - Amir Hossein Aalipour - Hossein Shamsi
A Time-Based Analogue-to-Digital Converter for ECG Applications
Atiyeh Karimlou - Mohammad Yavari
A New Approach to Determine Maximum Allowable Penetration level of LSPVPPs Considering Transient Angle Stability
Siavash Yari - Hamid Khoshkhoo
طراحی بهینه پارکینگ خودروهای برقی با در نظر گرفتن عدم قطعیت منابع انرژی تجدیدپذیر
سید محمد هاشمی مصیر - میثم جعفری نوکندی - محمد بزرگپور رودباری
طراحی یک کنترلکننده غیرخطی تطبیقی غیرمتمرکز برای تنظیم ولتاژ ریزشبکههای DC در حالت جزیرهای
سمیه بهرامی - فاطمه صفایی
Q-Learning-Oriented Distributed Energy Management of Grid-Connected Microgrid
Esmat Samadi - Ali Badri - Reza Ebrahimpour
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3