0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Integrating Model-Agnostic Meta-Learning with Advanced Language Embeddings for Few-Shot Intent Classification
نویسندگان :
Ali Rahimi
1
Hadi Veisi
2
1- دانشگاه تهران
2- دانشگاه تهران
کلمات کلیدی :
Few-shot learning،Model-Agnostic Meta-Learning (MAML)،Intent classification،Natural Language Processing (NLP)،BERT،LaBSE،Ada
چکیده :
Addressing the challenge of few-shot learning in intent classification tasks within Natural Language Processing (NLP), this study introduces a novel approach that harnesses the robust adaptation capabilities of Model-Agnostic Meta-Learning (MAML) combined with sophisticated language embeddings, namely BERT, LaBSE, and ada-002. The need for models to understand and classify intents with minimal training data is imperative to progress in creating versatile, responsive AI systems. We propose a methodology that leverages the generalizability of MAML and the deeply contextualized representations offered by state-of-the-art embeddings, allowing for significant improvements in Accuracy and data efficiency. We evaluate our approach using the CLINC150 dataset across a series of N-way \& K-shot configurations, demonstrating the efficacy of the proposed model with varying numbers of intent classes and examples. Our findings reveal that the ada-002 embeddings consistently provide superior performance in both 1-shot and 5-shot settings across all class configurations tested, indicating their potent synergy with meta-learning strategies. Specifically, openai-ada-002 achieved an accuracy of 97.07\% in the 5-Way \& 1-Shot setting and 99.1\% in the 5-Way \& 5-Shot setting. The outcomes of our experimental evaluation suggest that our approach also illuminates the potential of harmonious integration of cutting-edge language embeddings with meta-learning frameworks. This work provides a solid foundation for further exploration in optimizing few-shot intent classification, paving the way for creating AI systems proficient in understanding user intents with minimal exemplars. This research lays the groundwork for future advancements in few-shot intent classification, enabling the development of AI systems that require minimal training data to interpret user intent accurately.
لیست مقالات
لیست مقالات بایگانی شده
مبدل زمان پیوسته سیگما دلتا با پهنای باند 200k-28M مناسب برای گیرنده های باند پایه3G,4G
فائزه جسور قره باغ - مرتضی موسی زاده
A model to measure cyber security maturity at the national level
Mahdi Omrani - Masoud Shafiee - Siavash Khorsandi
سیستم تبدیل انرژی خورشیدی خانگی با قابلیت انتقال توان بی سیم
سعید رئیسی گهروئی - حمیدرضا تودجی
Location of Distributed Generation in the Distribution Network concerning of Capacity Credit with the TLBO Optimization Algorithm
Mohammadali Arash - Mohammad Khakroei
Security and Privacy Smart Contract Architecture for Energy Trading based on Blockchains
Masoumeh Nazari - Siavash Khorsandi - Jaber Babaki
(Room Temperature Chemiresistor H2S Gas Sensor based on ZnS/PbS Core-Shell Quantum Dots(CSQDs
Mojtaba Azimi - Ali Rostami
پیچش زمانی عمیق برای انطباق چندگانه سری های زمانی
سیدعلیرضا نوربخش - نرجس الهدی محمدزاده
Brain Effective Connectivity Comparision in Different States of Familiarity and Desiring Brands Confrontation: a Neuromarketing Study
Mahdi Taghaddossi - Mohammad Hasan Moradi
Image denoising using convolutional neural network
Behnam Latifi - Abolghasem Raie
A Novel Approach to Pulmonary Embolism Segmentation: Increasing an Attention-based U-Net
Hanie Arabian - Alireza Karimian - Hosein Arabi - Marjan Mansourian
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2