0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Integrating Model-Agnostic Meta-Learning with Advanced Language Embeddings for Few-Shot Intent Classification
نویسندگان :
Ali Rahimi
1
Hadi Veisi
2
1- دانشگاه تهران
2- دانشگاه تهران
کلمات کلیدی :
Few-shot learning،Model-Agnostic Meta-Learning (MAML)،Intent classification،Natural Language Processing (NLP)،BERT،LaBSE،Ada
چکیده :
Addressing the challenge of few-shot learning in intent classification tasks within Natural Language Processing (NLP), this study introduces a novel approach that harnesses the robust adaptation capabilities of Model-Agnostic Meta-Learning (MAML) combined with sophisticated language embeddings, namely BERT, LaBSE, and ada-002. The need for models to understand and classify intents with minimal training data is imperative to progress in creating versatile, responsive AI systems. We propose a methodology that leverages the generalizability of MAML and the deeply contextualized representations offered by state-of-the-art embeddings, allowing for significant improvements in Accuracy and data efficiency. We evaluate our approach using the CLINC150 dataset across a series of N-way \& K-shot configurations, demonstrating the efficacy of the proposed model with varying numbers of intent classes and examples. Our findings reveal that the ada-002 embeddings consistently provide superior performance in both 1-shot and 5-shot settings across all class configurations tested, indicating their potent synergy with meta-learning strategies. Specifically, openai-ada-002 achieved an accuracy of 97.07\% in the 5-Way \& 1-Shot setting and 99.1\% in the 5-Way \& 5-Shot setting. The outcomes of our experimental evaluation suggest that our approach also illuminates the potential of harmonious integration of cutting-edge language embeddings with meta-learning frameworks. This work provides a solid foundation for further exploration in optimizing few-shot intent classification, paving the way for creating AI systems proficient in understanding user intents with minimal exemplars. This research lays the groundwork for future advancements in few-shot intent classification, enabling the development of AI systems that require minimal training data to interpret user intent accurately.
لیست مقالات
لیست مقالات بایگانی شده
A brief review of methods for improving the performance of virtual synchronous generators under unbalnced conditions
Mohammad Hossein Mousavi - Hassan Moradi CheshmehBeigi
بهرهگیری از رویکرد برنامهریزی ریاضیاتی برای حل مسئلهی مجموعه رأس بازخورد، تحت شرط مستقل بودن یا همبندی
فاطمه سلطانی دزکی - حسین فلسفین
Diagnosis of Covid 19 disease, flu, allergies, colds
Mahyar Mohammady - Marzieh Kamali
Exploring Graph Biomarkers and Connectivity in Epilepsy Through Graph Learning
Ali Khosravipour - Sepideh Hajipour Sardouie
A Time-Distributed Convolutional Long Short-Term Memory for Hand Gesture Recognition
Mehdi Fatan Serj - Mersad Asgari - Bahram Lavi - Domenec Puig Valls - Miguel Angel Garcia
ارائه یک مبدل DC-DC منبع امپدانسی تک سوئیچه تک هسته مغناطیسی فوق افزاینده مناسب برای استفاده در کاربرد های انرژی نو
معصومه پرستش - سجاد رستمی
Introduce a novel approach to orbital maintenance in CRTBP
Amirreza Kosari - Ehsan Abbasali - Jamileh Hamzei - Majid Bakhtiari
Dynamic Lane Changing Control of Vehicle Platoon
Abolfazl Saadati Moghadam - Mohammad Haeri
A Non-Isolated Common Ground Dual-Input DC-DC Converter with a High Voltage Gain for Photovoltaic Power Generation Systems
Hamed Abdi - Naghi Rostami - Ebrahim Babaei
طراحی و تحلیل یک حسگر پلاسمونیک ضریب شکست بر پایه فیبر بلور فتونی با هدف بهبود مشخصات فنی
علی یاوری - حسن کاتوزیان - سارا قلی نژاد شفق
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4