0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
The Use of Additive Decomposition and Deep Neural Network for Photovoltaic Power Forecasting
نویسندگان :
Fariba Dehghan
1
Mohsen Parsa Moghaddam
2
Maryam Imani
3
1- دانشگاه تربیت مدرس
2- دانشگاه تربیت مدرس
3- دانشگاه تربیت مدرس
کلمات کلیدی :
Additive decomposition،Convolution neural network،Deep learning،PV power forecasting
چکیده :
Predict photovoltaic (PV) power production is indispensable for security and reliability of the grid. In this article, a short-term forecasting method, namely trend decomposition two-dimensional convolutional neural network based on additive decomposition and convolution neural network (CNN) is proposed. Firstly, the additive decomposition model is deployed to decompose the PV power generation series to the long-term trend (LT), the seasonal trend (ST), and the random component. Then, three independent two-dimensional convolutional neural networks are designed to extract daily and hourly dependencies among the decomposed components. Finally, the prediction results of these networks are summed for the final forecast. The one-day-ahead forecasting capability of the presented method is evaluated with two case studies using real datasets gathered from Limburg and Luxembourg, Belgium. Analysis of the prediction’s results indicates that the proposed method has higher accuracy compared to individual multi-layer perceptron, two-dimensional convolutional neural network, long short-term memory (LSTM), gated recurrent unit, and bidirectional LSTM networks.
لیست مقالات
لیست مقالات بایگانی شده
A Framework for Plant Topology Extraction Using Process Mining and Alarm Data
Amir Neshastegaran - Ali Norouzifar - ایمان ایزدی
A Novel Generation Shedding Procedure for Power Management System in Industrial Power Plants
Erfan Asadi - Hamid Khoshkhoo - Ali Parizad
Improving the Performance of Unified Power Quality Conditioner Using Interval Type 2 Fuzzy Control
Farzad Rastegar - Zohreh Paydar
Investigation of The Thermal Process Stability Analysis By New BIBO Stability Algorithm of 2-D Discrete Models
Mehdi Mohammadi - Masoud Shafiee - Mahdi Mirshahi
A Bidirectional Transformerless Direct AC-AC Dynamic Voltage Restorer with Extended Compensation Range and Up/Down Capability
ُSeyed Mohsen Mortazavi - MohammadHadi Mokhtari - Mohammad Reza Zolghadri
MAD-TI: Meta-path Aggregated-Graph Attention Network for Drug Target Interaction Prediction
Reza Shami Tanha - Maryam Sadighian - Arash Zabihian - Mohsen Hooshmand - Mohsen Afsharchi
Stability Analysis of Distributed-Order Systems: a Lyapunov Scheme
Vahid Badri
Interval-Based Setting Approach for Distance Relays Considering Uncertainties Using Monte Carlo Simulation
Abolfazl Hadadi - Mohammad Javad Jalilian - Behrooz Vahidi - Gholam Hossein Riahy Dehkordi
Non-homogeneous interference suppression in OFDM array radars using direct data domain approach
Sima Shariatmadari
Improving Spiking Neural Network Performance Using Astrocyte Feedback for Farsi Digit Recognition
Malihe Nazari - Fariba Bahrami - Mohammad Javad Yazdanpanah
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3