0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
The Use of Additive Decomposition and Deep Neural Network for Photovoltaic Power Forecasting
نویسندگان :
Fariba Dehghan
1
Mohsen Parsa Moghaddam
2
Maryam Imani
3
1- دانشگاه تربیت مدرس
2- دانشگاه تربیت مدرس
3- دانشگاه تربیت مدرس
کلمات کلیدی :
Additive decomposition،Convolution neural network،Deep learning،PV power forecasting
چکیده :
Predict photovoltaic (PV) power production is indispensable for security and reliability of the grid. In this article, a short-term forecasting method, namely trend decomposition two-dimensional convolutional neural network based on additive decomposition and convolution neural network (CNN) is proposed. Firstly, the additive decomposition model is deployed to decompose the PV power generation series to the long-term trend (LT), the seasonal trend (ST), and the random component. Then, three independent two-dimensional convolutional neural networks are designed to extract daily and hourly dependencies among the decomposed components. Finally, the prediction results of these networks are summed for the final forecast. The one-day-ahead forecasting capability of the presented method is evaluated with two case studies using real datasets gathered from Limburg and Luxembourg, Belgium. Analysis of the prediction’s results indicates that the proposed method has higher accuracy compared to individual multi-layer perceptron, two-dimensional convolutional neural network, long short-term memory (LSTM), gated recurrent unit, and bidirectional LSTM networks.
لیست مقالات
لیست مقالات بایگانی شده
A Deep Learning-Based Model for House Number Detection And Recognition
Roghaiyeh Tayefeh Younesi - Jafar Tanha - Samaneh Namvar - Sahar Hassanzadeh Mostafaei
یک روش تشخیص و تصحیح خطا برای بلوک های داده
سعیده صادقی - محسن راجی
Design and Control of a Novel Multi-port Bidirectional Buck-Boost Converter Suitable for Hybrid Electric Vehicle Charging Stations
Amir Safaeinasab - Homayon Soltani Gohari - Karim Abbaszadeh
بهبود تخمین واریانس نویز با بهره گیری از واریانس تغییرات سیگنال
مجید دهقانیزاده - مسعودرضا آقابزرگی
A Coronavirus Herd Immunity Optimizer For Intrusion Detection System
Amir Soltany Mahboob - Hadi Shahriar Shahhoseini - Mohammad Reza Ostadi Moghaddam - Shima Yousefi
A Novel Low Torque Ripple Hexagon Biased Flux Doubly Salient Permanent Magnet Motor
Mohammad Amirkhani - Behnam Mohammadian Mosammam - Mojtaba Mirsalim
Multinomial Emoji Prediction Using Deep Bidirectional Transformers and Topic Modeling
Zahra Ebrahimian - Ramin Toosi - Mohammad Ali Akhaee
Modeling of Photo-thermoelectric Current Effects in Phase Change Material based Optical Nano Dipole Antenna Energy Transducer
Daniyal Khosh Maram - Seyed Asad Amirhosseini
Selenium Doped Hafnium Disulfide Alloy for Visible Photodetection
Mohammadreza Razeghizadeh - Mohsen Mazaherifar - Mahdi Pourfath
The Use of NSGA-2 for Optimal Placement and Management of Renewable Energy Sources When Considering Network Uncertainty and Fault Current Limiters
Ali Akbar Farahani - Seyed Hossein Hesamedin Sadeghi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2