0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
The Use of Additive Decomposition and Deep Neural Network for Photovoltaic Power Forecasting
نویسندگان :
Fariba Dehghan
1
Mohsen Parsa Moghaddam
2
Maryam Imani
3
1- دانشگاه تربیت مدرس
2- دانشگاه تربیت مدرس
3- دانشگاه تربیت مدرس
کلمات کلیدی :
Additive decomposition،Convolution neural network،Deep learning،PV power forecasting
چکیده :
Predict photovoltaic (PV) power production is indispensable for security and reliability of the grid. In this article, a short-term forecasting method, namely trend decomposition two-dimensional convolutional neural network based on additive decomposition and convolution neural network (CNN) is proposed. Firstly, the additive decomposition model is deployed to decompose the PV power generation series to the long-term trend (LT), the seasonal trend (ST), and the random component. Then, three independent two-dimensional convolutional neural networks are designed to extract daily and hourly dependencies among the decomposed components. Finally, the prediction results of these networks are summed for the final forecast. The one-day-ahead forecasting capability of the presented method is evaluated with two case studies using real datasets gathered from Limburg and Luxembourg, Belgium. Analysis of the prediction’s results indicates that the proposed method has higher accuracy compared to individual multi-layer perceptron, two-dimensional convolutional neural network, long short-term memory (LSTM), gated recurrent unit, and bidirectional LSTM networks.
لیست مقالات
لیست مقالات بایگانی شده
Output feedback tube-based MPC for an LPV system using inexact scheduling variables
Nima Naeiji - Ali Akbar Afzalian - Arash Sadeghzadeh
Low power SRAM using an optimal number of split bit lines and single-ended sensing
Mahdie Nazemian - Sayed Masoud Sayedi
Fractional-Order Model Prediction Attitude Control For Unmanned Aerial Vehicles
Hossein Hassanzadeh Yaghini
Ultra-Compact and Fast All-Optical Half-Subtractor Photonic Crystal Logic Gate
Ehsan Veisi - Mahmood Seifouri - Saeed Olyaee
Medial Residual Encoder Layers for Classification of Brain Tumors in Magnetic Resonance Images
Zahra Sobhaninia - Nader Karimi - Pejman Khadivi - Shadrokh Samavi
بهبود بازدهی انرژی در اینترنت اشیاء باند باریک با وفقیسازی لینک به کمک یادگیری عمیق
سمانه امیریان - محمدعلی سبقتی
Fully Soft-Switched Quadratic High Step-Up DC-DC Converter with a Single Switch and Low Input Current Ripple for Renewable Energy Applications
Ali Nadermohammadi - Hamed Abdi - Pouya Abolhassani - Seyed Hossein Hosseini - Mehran Sabahi - Naghi Rostami
اینورتر چندسطحی منبع ولتاژ جدید با هدف کاهش سوئیچ برای سطوح بالا
علی سیفی - سید حسین حسینی - مهرداد طرقدار حق - مهران صباحی - مجید حسین پور
Improved quantum secret sharing based on entanglement swapping
Mahsa Khorrampanah - Monireh Houshmand - Ali Karimi Lenji
Open Circuit Fault Detection and Diagnosis for Seven-Level Hybrid Active Neutral Point Clamped (ANPC) Multilevel Inverter
Mobin Azimipanah - Mahyar Hassanifar - Yousef Neyshabouri
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4