0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A Combined Channel Approach for Decoding Intracranial EEG Signals: Enhancing Accuracy through Spatial Information Integration
نویسندگان :
Maryam Ostadsharif Memar
1
Navid Ziaei
2
Behzad Nazari
3
1- دانشگاه صنعتی اصفهان
2- دانشگاه صنعتی اصفهان
3- دانشگاه صنعتی اصفهان
کلمات کلیدی :
Intracranial Electroencephalography (iEEG)،Neural decoding،iEEG decoder،Machine learning،Brain-computer interface (BCI)
چکیده :
Intracranial EEG (iEEG) recording, characterized by its high spatial and temporal resolution and superior signal-to-noise ratio (SNR), enables the development of precise brain-computer interface (BCI) systems for neural decoding. However, the invasive nature of the procedure significantly limits the availability of iEEG datasets, both in terms of the number of participants and the duration of recorded sessions. To overcome this, we propose a single-participant machine learning model optimized for decoding iEEG signals. The model employs 18 key features and operates in two modes: best channel and combined channel. The combined channel mode integrates spatial information from multiple brain regions, resulting in superior classification performance. Evaluations across three datasets—Music Reconstruction, Audio Visual, and AJILE12—demonstrate that the model in combined channel mode consistently outperforms the best channel mode across all classifiers. In the best-performing cases, Random Forest reached an F1 score of 0.81 ± 0.05 in the Music Reconstruction dataset, 0.82 ± 0.10 in the Audio Visual dataset, and XGBoost achieved an F1 score of 0.84 ± 0.08 in the AJILE12 dataset. Additionally, the analysis of brain region contributions in combined channel mode revealed that the model can identify relevant brain regions, aligned with physiological expectations, for each task and effectively combine the data from electrodes in these regions to achieve high performance. These findings underscore the resulting of integrating spatial information across brain regions to improve task decoding, offering new avenues for advancing BCI systems and neurotechnological applications.
لیست مقالات
لیست مقالات بایگانی شده
Simulation and Measurement of a Large Reverberation Chamber (LRC) Loaded by Metal Elements
Mojtaba Basravi - ZakerHossein Firouzeh - Hadi Aliakbarian
Physiotherapy Algorithms on FUM-Physio Robot
Keyvan Tayaranian Marvian - Amir Hossein Nazari - Seyed Mohammad Tahamipour Zarandi - Mohammad Reza Akbarzadeh totonchi - Zahra Soltani - Alireza Akbarzadeh totonchi
Design and fabrication of a microstrip phase shifter based on liquid crystal
Sadegh Rajabi Doulataabadi - Seyed Hossein Hosseini Biuki - Farid Khoshkhati - Seyed Abbas Jazayeri Moghadas - Mohammad Masoudi Mohammadi - Mehdi Ahmadi-Boroujeni
مدیریت برنامهریزی هاب انرژی در مواجه با عدم قطعیتهای شدید قیمت برق و بار مصرفکننده با استفاده از روش تئوری تصمیمگیری بر مبنای شکاف اطلاعاتی
رضا غریبی - بهروز وحیدی
A boosting based approach to handle imbalanced data
Sahar Hassanzadeh Mostafaei - Jafar Tanha - Negin Samadi - Soodabeh Imanzadeh - Nazila Razzaghi-Asl
Surface roughness classification in dynamic touch using EEG signals
Ali Amini - Karim Faez - Mahmood Amiri
Innovative MOEMS Biosensor for Hepatitis DNA Detection Utilizing an Optical Ring Resonator
Hossein Bahramian - Arash Yazdanpanah Goharrizi
Reactive Power Compensation in Distribution Grids: An Application of Trinary Cascaded H-bridge Multilevel Inverter
Yousef Neyshabouri - Mohammad Farhadi-Kangarlu
Transmission and Energy Storage Co-Planning Expansion Considering Short-Term Uncertainties under Renewable Penetration
Mojtaba Moradi-Sepahvand - Turaj Amraee
Generation of orbital angular momentum modes via SSPP leaky-wave antenna based on holography technique
Sajjad Zohrevand - Nader Komjani
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2