0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A Combined Channel Approach for Decoding Intracranial EEG Signals: Enhancing Accuracy through Spatial Information Integration
نویسندگان :
Maryam Ostadsharif Memar
1
Navid Ziaei
2
Behzad Nazari
3
1- دانشگاه صنعتی اصفهان
2- دانشگاه صنعتی اصفهان
3- دانشگاه صنعتی اصفهان
کلمات کلیدی :
Intracranial Electroencephalography (iEEG)،Neural decoding،iEEG decoder،Machine learning،Brain-computer interface (BCI)
چکیده :
Intracranial EEG (iEEG) recording, characterized by its high spatial and temporal resolution and superior signal-to-noise ratio (SNR), enables the development of precise brain-computer interface (BCI) systems for neural decoding. However, the invasive nature of the procedure significantly limits the availability of iEEG datasets, both in terms of the number of participants and the duration of recorded sessions. To overcome this, we propose a single-participant machine learning model optimized for decoding iEEG signals. The model employs 18 key features and operates in two modes: best channel and combined channel. The combined channel mode integrates spatial information from multiple brain regions, resulting in superior classification performance. Evaluations across three datasets—Music Reconstruction, Audio Visual, and AJILE12—demonstrate that the model in combined channel mode consistently outperforms the best channel mode across all classifiers. In the best-performing cases, Random Forest reached an F1 score of 0.81 ± 0.05 in the Music Reconstruction dataset, 0.82 ± 0.10 in the Audio Visual dataset, and XGBoost achieved an F1 score of 0.84 ± 0.08 in the AJILE12 dataset. Additionally, the analysis of brain region contributions in combined channel mode revealed that the model can identify relevant brain regions, aligned with physiological expectations, for each task and effectively combine the data from electrodes in these regions to achieve high performance. These findings underscore the resulting of integrating spatial information across brain regions to improve task decoding, offering new avenues for advancing BCI systems and neurotechnological applications.
لیست مقالات
لیست مقالات بایگانی شده
Stability Analysis for the Non-linear Model Predictive Control of a Flexible Joint Manipulator with Dynamics Uncertainties
Mohamadreza Satvati - Hossein Karimpour - Keivan Torabi - Mohammad Motaharifar
A Bidirectional Transformerless Resonant Converter for Capacitive Power Transmission for Electric Vehicle and PowerWall Applications
Jasem Shahsevani - Reza Beiranvand
A Comprehensive Analysis of a Digital Control Strategy for Photovoltaic-Based Single-Phase Grid-Tied Inverter Systems
Soheil Hasani Sangani - Mohamad Reza Moslemnejad - Mojtaba Saeedi - Alireza Jalalitalab - Reza Beiranvand
امنیت سایبری در مواجه با تزریق اطلاعات نادرست به سیستم قدرت هوشمند و ارائه راهکار مقابله
مهدی جمشیدی آفارانی - مهرداد عابدی
An Investigation on Transfer Learning for Classification of COVID-19 Chest X-Ray Images with Pre-trained Convolutional-based Architecture
Mobina Abdoli Nemati - ََAmirreza Baba Ahmadi
مقایسهگر پویا با قابلیت کار در شرایط زیر آستانه بر اساس منطق Pseudo-NMOS
سید سعید حسینی دولت آبادی - محسن جلالی
Design and Implementation of a Compact 4×4 Microstrip Patch Antenna Array with Circular Polarization for Nano Satellite Applications
Mohammad Ghasemi - Majid Afsahi - Shoresh Namdari
Energy Management of a Floating Photovoltaic System by Optimally Designed Fuzzy Logic Controller
Payam Loloei - S.hossein Hosseinian
Primary-Side Nonlinear Model Predictive Control for Dynamic Wireless Power Transfer System in Electric Vehicles
Kioumars Shahriari - Salar Sadeghian - Sahand Fardadidokht Fooman - Adib Abrishamifar
Adaptive Smooth Super Twisting Sliding Mode Control for Parkinson's Tremor Treatment
Reyhaneh Valibeik - ّFatemeh Jahangiri - Mostafa Abedi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2