0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A Combined Channel Approach for Decoding Intracranial EEG Signals: Enhancing Accuracy through Spatial Information Integration
نویسندگان :
Maryam Ostadsharif Memar
1
Navid Ziaei
2
Behzad Nazari
3
1- دانشگاه صنعتی اصفهان
2- دانشگاه صنعتی اصفهان
3- دانشگاه صنعتی اصفهان
کلمات کلیدی :
Intracranial Electroencephalography (iEEG)،Neural decoding،iEEG decoder،Machine learning،Brain-computer interface (BCI)
چکیده :
Intracranial EEG (iEEG) recording, characterized by its high spatial and temporal resolution and superior signal-to-noise ratio (SNR), enables the development of precise brain-computer interface (BCI) systems for neural decoding. However, the invasive nature of the procedure significantly limits the availability of iEEG datasets, both in terms of the number of participants and the duration of recorded sessions. To overcome this, we propose a single-participant machine learning model optimized for decoding iEEG signals. The model employs 18 key features and operates in two modes: best channel and combined channel. The combined channel mode integrates spatial information from multiple brain regions, resulting in superior classification performance. Evaluations across three datasets—Music Reconstruction, Audio Visual, and AJILE12—demonstrate that the model in combined channel mode consistently outperforms the best channel mode across all classifiers. In the best-performing cases, Random Forest reached an F1 score of 0.81 ± 0.05 in the Music Reconstruction dataset, 0.82 ± 0.10 in the Audio Visual dataset, and XGBoost achieved an F1 score of 0.84 ± 0.08 in the AJILE12 dataset. Additionally, the analysis of brain region contributions in combined channel mode revealed that the model can identify relevant brain regions, aligned with physiological expectations, for each task and effectively combine the data from electrodes in these regions to achieve high performance. These findings underscore the resulting of integrating spatial information across brain regions to improve task decoding, offering new avenues for advancing BCI systems and neurotechnological applications.
لیست مقالات
لیست مقالات بایگانی شده
Conversion of Linear Polarized Light-to-Orbital Angular Momentum with Variable Topological Charges, Using the Surface Plasmons of Elliptical Holes Etched in a Gold Layer
Amir Mohammad Ghanei - Abolfazl Aghili - Sara Darbari
Higher-order semi-blind source separation approaches using Canonical Polyadic (CP) decomposition
Mohammad Jalilpour Monesi - Sepideh Hajipour Sardouie
بهینهسازی مبدلDC-DC منبع امپدانسی مبتنی بر ترانسفورماتور ایزوله گالوانیکی با کاهش تعداد سوئیچها
علی سلیمانی - رضا قاضی
Dominant Control Set Selection in Clustered Complex Brain Network
Sana Motallebi - Mohammad Javad Yazdanpanah - Abdol-Hossein Vahabie
Diagnosis of Heart Diseases based on Processing Heart Sound using Machine Learning
Maryam Moulaverdi - Akbar Ranjbar
بخشبندی خودکار تصاویر تشدید مغناطیسی ستون فقرات کمری با شبکه سِگیونِت
محمد انصاری فرد - رضا آقایی زاده ظروفی
Multi-agent H-Learning Based Cooperative Spectrum Sensing for Cognitive Radio Networks
Elaheh Karimpour Fard - Mahdi Nouri - Hamid Behroozi - Sima Sobhi-Givi
بهبودی بر مساله تشخیص اشیا برجسته درتصاویر مبتنی بر یادگیری عمیق
مهران طاهری - محمد صادق هل فروش - کامران کاظمی
Design of a 2MW Medium Voltage Conventional Hybrid DC Circuit Breaker for Railway Application
Seyed Hamid Khalkhali - Mohsen Taghizadeh Kejani - Ali Asghar Razi Kazemi
Proposing an indirect distributed approach to apply SSSEP vibrational stimulation
SAHAR SADEGHI - Ali Maleki
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2