0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A Combined Channel Approach for Decoding Intracranial EEG Signals: Enhancing Accuracy through Spatial Information Integration
نویسندگان :
Maryam Ostadsharif Memar
1
Navid Ziaei
2
Behzad Nazari
3
1- دانشگاه صنعتی اصفهان
2- دانشگاه صنعتی اصفهان
3- دانشگاه صنعتی اصفهان
کلمات کلیدی :
Intracranial Electroencephalography (iEEG)،Neural decoding،iEEG decoder،Machine learning،Brain-computer interface (BCI)
چکیده :
Intracranial EEG (iEEG) recording, characterized by its high spatial and temporal resolution and superior signal-to-noise ratio (SNR), enables the development of precise brain-computer interface (BCI) systems for neural decoding. However, the invasive nature of the procedure significantly limits the availability of iEEG datasets, both in terms of the number of participants and the duration of recorded sessions. To overcome this, we propose a single-participant machine learning model optimized for decoding iEEG signals. The model employs 18 key features and operates in two modes: best channel and combined channel. The combined channel mode integrates spatial information from multiple brain regions, resulting in superior classification performance. Evaluations across three datasets—Music Reconstruction, Audio Visual, and AJILE12—demonstrate that the model in combined channel mode consistently outperforms the best channel mode across all classifiers. In the best-performing cases, Random Forest reached an F1 score of 0.81 ± 0.05 in the Music Reconstruction dataset, 0.82 ± 0.10 in the Audio Visual dataset, and XGBoost achieved an F1 score of 0.84 ± 0.08 in the AJILE12 dataset. Additionally, the analysis of brain region contributions in combined channel mode revealed that the model can identify relevant brain regions, aligned with physiological expectations, for each task and effectively combine the data from electrodes in these regions to achieve high performance. These findings underscore the resulting of integrating spatial information across brain regions to improve task decoding, offering new avenues for advancing BCI systems and neurotechnological applications.
لیست مقالات
لیست مقالات بایگانی شده
برنامه ریزی احتمالاتی بهینه فیلترهای پسیو در حضور خودروهای برقی متصل به شبکه با قابلیت جبرانسازی هارمونیک در شبکههای توزیع
پریسا انجم شعاع - سعید اسماعیلی
A New Method on Failure Detection of Fixed and Moving Contacts of Circuit Breakers
Hassan Hamidi - Ali Asghar Razi Kazemi
Design of an Optical Current Transformer for High-Voltage Gas-Insulated Switchgear-Part I: Focus on Optical Sensor Design
Reza Babaei - Asghar Akbari - Arash Moradi
Design of a Full Swing 20-Transistors Full Adder Cell based on CNTFET with High Speed and Low PDP
Amir Baghi Rahin - Afshin Kadivarian - Vahid Baghi Rahin
Exploring Graph Biomarkers and Connectivity in Epilepsy Through Graph Learning
Ali Khosravipour - Sepideh Hajipour Sardouie
Stable Target Tracking in Wireless Sensor Networks Under Malicious Cyber Attacks
Jafar Akhondali - Mohammad Taheri
Flexible Microgrid Scheduling with the Presence of Renewable Energy Resources
Mahdi Rahimi - Fatemeh Jahanbani Ardakani - Ali Reza Rahimi
Active Data Fusion in Deep Neural Networks via Separation Index
Movahed Jamshidi - Ahmad Kalhor - Abdol-Hossein Vahabie
Type-2 Fuzzy Wavelet Control for a Quadruple-Tank System based on Disturbance Rejection
Mohammadreza Esmaeilidehkordi - Alireza Nezamzadeh - Maryam Zekri - Iman Izadi - Farid Sheikholeslam
Superimposed Channel Estimation in OTFS Modulation Using Compressive Sensing
Omid Abbassi Aghda - Mohammad Javad Omidi - Hamid Saeedi-sourck
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2