0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A Combined Channel Approach for Decoding Intracranial EEG Signals: Enhancing Accuracy through Spatial Information Integration
نویسندگان :
Maryam Ostadsharif Memar
1
Navid Ziaei
2
Behzad Nazari
3
1- دانشگاه صنعتی اصفهان
2- دانشگاه صنعتی اصفهان
3- دانشگاه صنعتی اصفهان
کلمات کلیدی :
Intracranial Electroencephalography (iEEG)،Neural decoding،iEEG decoder،Machine learning،Brain-computer interface (BCI)
چکیده :
Intracranial EEG (iEEG) recording, characterized by its high spatial and temporal resolution and superior signal-to-noise ratio (SNR), enables the development of precise brain-computer interface (BCI) systems for neural decoding. However, the invasive nature of the procedure significantly limits the availability of iEEG datasets, both in terms of the number of participants and the duration of recorded sessions. To overcome this, we propose a single-participant machine learning model optimized for decoding iEEG signals. The model employs 18 key features and operates in two modes: best channel and combined channel. The combined channel mode integrates spatial information from multiple brain regions, resulting in superior classification performance. Evaluations across three datasets—Music Reconstruction, Audio Visual, and AJILE12—demonstrate that the model in combined channel mode consistently outperforms the best channel mode across all classifiers. In the best-performing cases, Random Forest reached an F1 score of 0.81 ± 0.05 in the Music Reconstruction dataset, 0.82 ± 0.10 in the Audio Visual dataset, and XGBoost achieved an F1 score of 0.84 ± 0.08 in the AJILE12 dataset. Additionally, the analysis of brain region contributions in combined channel mode revealed that the model can identify relevant brain regions, aligned with physiological expectations, for each task and effectively combine the data from electrodes in these regions to achieve high performance. These findings underscore the resulting of integrating spatial information across brain regions to improve task decoding, offering new avenues for advancing BCI systems and neurotechnological applications.
لیست مقالات
لیست مقالات بایگانی شده
CNN-LSTM model for Confusion Classification; using Single-Channel EEG
Amirhossein Aran - Zahra Ghanbari - Mohammad Hassan Moradi
Optimal Placement of Unified Power Flow Controller in Power System Considering Transient Stability and Voltage Stability Criteria
Esmail Zahmatkeshan - Mohsen Bandekhoda
Analysis of the DC Bias Effects on the Transformer Vibration Using a Multi-field Coupling Model
Amir Esmaeili Nezhad - Mohammad Hamed Samimi
پنل بازیابی: نرم افزار بازیابی سیستمهای قدرت با قیود امنیتی
سجاد نجفی روادانق - رسول اسماعیل زاده - رضا فرتاش
Design of a 2MW Medium Voltage Conventional Hybrid DC Circuit Breaker for Railway Application
Seyed Hamid Khalkhali - Mohsen Taghizadeh Kejani - Ali Asghar Razi Kazemi
Exploring Graph Biomarkers and Connectivity in Epilepsy Through Graph Learning
Ali Khosravipour - Sepideh Hajipour Sardouie
ساخت و مشخصه یابی حسگر گاز QCM با پوشش نیترات لانتانیوم برای آشکارسازی بخار اسید هیدروفلوئوریک
زهرا خوش بین - وحید غفاری نیا
New dental implants with micro-movement capability - biomechanical evaluation and evolution
Zahra Nouri - Nima Norouzi
A High Responsivity Plasmonic Internal Photoemission detector for Optical Communication
Faramarz Alihosseini - Aref Rasoulzadeh Zali - Tavakol Pakizeh - Hesam Zandi
Dynamic Lane Changing Control of Vehicle Platoon
Abolfazl Saadati Moghadam - Mohammad Haeri
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4