0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A Combined Channel Approach for Decoding Intracranial EEG Signals: Enhancing Accuracy through Spatial Information Integration
نویسندگان :
Maryam Ostadsharif Memar
1
Navid Ziaei
2
Behzad Nazari
3
1- دانشگاه صنعتی اصفهان
2- دانشگاه صنعتی اصفهان
3- دانشگاه صنعتی اصفهان
کلمات کلیدی :
Intracranial Electroencephalography (iEEG)،Neural decoding،iEEG decoder،Machine learning،Brain-computer interface (BCI)
چکیده :
Intracranial EEG (iEEG) recording, characterized by its high spatial and temporal resolution and superior signal-to-noise ratio (SNR), enables the development of precise brain-computer interface (BCI) systems for neural decoding. However, the invasive nature of the procedure significantly limits the availability of iEEG datasets, both in terms of the number of participants and the duration of recorded sessions. To overcome this, we propose a single-participant machine learning model optimized for decoding iEEG signals. The model employs 18 key features and operates in two modes: best channel and combined channel. The combined channel mode integrates spatial information from multiple brain regions, resulting in superior classification performance. Evaluations across three datasets—Music Reconstruction, Audio Visual, and AJILE12—demonstrate that the model in combined channel mode consistently outperforms the best channel mode across all classifiers. In the best-performing cases, Random Forest reached an F1 score of 0.81 ± 0.05 in the Music Reconstruction dataset, 0.82 ± 0.10 in the Audio Visual dataset, and XGBoost achieved an F1 score of 0.84 ± 0.08 in the AJILE12 dataset. Additionally, the analysis of brain region contributions in combined channel mode revealed that the model can identify relevant brain regions, aligned with physiological expectations, for each task and effectively combine the data from electrodes in these regions to achieve high performance. These findings underscore the resulting of integrating spatial information across brain regions to improve task decoding, offering new avenues for advancing BCI systems and neurotechnological applications.
لیست مقالات
لیست مقالات بایگانی شده
Selenium Doped Hafnium Disulfide Alloy for Visible Photodetection
Mohammadreza Razeghizadeh - Mohsen Mazaherifar - Mahdi Pourfath
Dynamic Wide Area Situational Awareness: Practical Experience
Maghsoud Mokhtari - Mostafa Rajabi Mashhadi - Mehdi Moghimzadeh - Maziyar Jamshidi - Mehdi Baligh
Bidirectional Isolated DC/DC Dual-Active-Bridge Converters Optimum Soft-Switching Control Method for Electrical Vehicle Applications
Shokoufeh Valadkhani - Mojtaba Mirsalim - Gevork B. Gharehpetian
A Novel Analytical Tuning Method for Designing of Composite Nonlinear Feedback Control Law in Continuous-time Dynamical Systems
Ali Vazani - Valiollah Ghaffari
Multi-physics electromagnetic-mechanical analysis of a high-speed switched reluctance motor for vacuum cleaner application
Nasrin Majlesi - Morteza Saghaian-Nejad - Amir Rashidi
Comparative Analysis of flash-Visually Evoked Potential Based on Recorded Signal Powers from Rat’s Occipital Cortex
Masoud Poostchi Avval - Ehsan Naeemi - Mohammad Maymandi Nejad - Ali Moghimi
Simultaneous Stabilization of Constrained Singular Time-delay Systems
Emad Jafari - Tahereh Binazadeh
Sliding-mode H∞ Control of Continuous Singular Systems under Zeno-free Event-triggered Sampling Scheme
Hamidreza Ahmadzadeh - Masoud Shafiee
بررسی و تحلیل تقابل تلفات و پروفیل ولتاژ به کمک الگوریتم ژنتیک چند هدفه در سیستم های قدرت در حضور سیستم های انتقال قدرت انعطاف پذیر
سجاد احمدنیا - حبیب رجبی مشهدی
مقایسهگر پویا با قابلیت کار در شرایط زیر آستانه بر اساس منطق Pseudo-NMOS
سید سعید حسینی دولت آبادی - محسن جلالی
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1