0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A Combined Channel Approach for Decoding Intracranial EEG Signals: Enhancing Accuracy through Spatial Information Integration
نویسندگان :
Maryam Ostadsharif Memar
1
Navid Ziaei
2
Behzad Nazari
3
1- دانشگاه صنعتی اصفهان
2- دانشگاه صنعتی اصفهان
3- دانشگاه صنعتی اصفهان
کلمات کلیدی :
Intracranial Electroencephalography (iEEG)،Neural decoding،iEEG decoder،Machine learning،Brain-computer interface (BCI)
چکیده :
Intracranial EEG (iEEG) recording, characterized by its high spatial and temporal resolution and superior signal-to-noise ratio (SNR), enables the development of precise brain-computer interface (BCI) systems for neural decoding. However, the invasive nature of the procedure significantly limits the availability of iEEG datasets, both in terms of the number of participants and the duration of recorded sessions. To overcome this, we propose a single-participant machine learning model optimized for decoding iEEG signals. The model employs 18 key features and operates in two modes: best channel and combined channel. The combined channel mode integrates spatial information from multiple brain regions, resulting in superior classification performance. Evaluations across three datasets—Music Reconstruction, Audio Visual, and AJILE12—demonstrate that the model in combined channel mode consistently outperforms the best channel mode across all classifiers. In the best-performing cases, Random Forest reached an F1 score of 0.81 ± 0.05 in the Music Reconstruction dataset, 0.82 ± 0.10 in the Audio Visual dataset, and XGBoost achieved an F1 score of 0.84 ± 0.08 in the AJILE12 dataset. Additionally, the analysis of brain region contributions in combined channel mode revealed that the model can identify relevant brain regions, aligned with physiological expectations, for each task and effectively combine the data from electrodes in these regions to achieve high performance. These findings underscore the resulting of integrating spatial information across brain regions to improve task decoding, offering new avenues for advancing BCI systems and neurotechnological applications.
لیست مقالات
لیست مقالات بایگانی شده
Shielding factor enhancement method for Bi-stage active shield in SQUID-based Magnetocardiography system
Zeynab Alipour - Fatemeh Esmaili - Faezeh Shanehsazzadeh - Mehdi Fardmanesh
A brief review of methods for improving the performance of virtual synchronous generators under unbalnced conditions
Mohammad Hossein Mousavi - Hassan Moradi CheshmehBeigi
Optimal Design of a Synchronous Reluctance Motor Using BioGeography-Based Optimization
Tohid Sharifi - Mojtaba Mirsalim
Control Tracker Of Two Degrees Of Solar Cell Freedom Using Sliding Mode Controller
Kobra Siahi - Mohammad Reza Arvan - Vahid Behnamgol - Mahdi Mosayebi
A High Linearity Wideband Low-Noise Amplifier Using Capacitor Cross-Coupled Common-Gate Structure
Abolfazl Rajaiyan - Fahimeh Rahimi - Mehdi Saberi
Structural Stability and Electron Density Analysis of Doped Antimonene: A First-Principles Study
Arash Yazdanpanah Goharrizi - Peyman Saberi Parsa
Optimal D2D Resource Allocation in Heterogeneous Cellular Networks by Decentralized Multi-Agent Deep Q-Learning
Pouya Akhoundzadeh - Ghasem Mirjalily - Mohammad taghi Sadeghi
Enhanced Current Commutation Drive Circuit for Hybrid DC Circuit Breaker
Alireza Jaafari - Sadegh Mohsenzade - Ali Asghar Razi-Kazemi
Development of a Tilt Bicopter: Experimental Results
Ali Moaveni - Alireza Bahmanyar - Arshia Rezaei - Amin Talaeizadeh - Aria Alasti
Type-2 Fuzzy Wavelet Control for a Quadruple-Tank System based on Disturbance Rejection
Mohammadreza Esmaeilidehkordi - Alireza Nezamzadeh - Maryam Zekri - Iman Izadi - Farid Sheikholeslam
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3