0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A Combined Channel Approach for Decoding Intracranial EEG Signals: Enhancing Accuracy through Spatial Information Integration
نویسندگان :
Maryam Ostadsharif Memar
1
Navid Ziaei
2
Behzad Nazari
3
1- دانشگاه صنعتی اصفهان
2- دانشگاه صنعتی اصفهان
3- دانشگاه صنعتی اصفهان
کلمات کلیدی :
Intracranial Electroencephalography (iEEG)،Neural decoding،iEEG decoder،Machine learning،Brain-computer interface (BCI)
چکیده :
Intracranial EEG (iEEG) recording, characterized by its high spatial and temporal resolution and superior signal-to-noise ratio (SNR), enables the development of precise brain-computer interface (BCI) systems for neural decoding. However, the invasive nature of the procedure significantly limits the availability of iEEG datasets, both in terms of the number of participants and the duration of recorded sessions. To overcome this, we propose a single-participant machine learning model optimized for decoding iEEG signals. The model employs 18 key features and operates in two modes: best channel and combined channel. The combined channel mode integrates spatial information from multiple brain regions, resulting in superior classification performance. Evaluations across three datasets—Music Reconstruction, Audio Visual, and AJILE12—demonstrate that the model in combined channel mode consistently outperforms the best channel mode across all classifiers. In the best-performing cases, Random Forest reached an F1 score of 0.81 ± 0.05 in the Music Reconstruction dataset, 0.82 ± 0.10 in the Audio Visual dataset, and XGBoost achieved an F1 score of 0.84 ± 0.08 in the AJILE12 dataset. Additionally, the analysis of brain region contributions in combined channel mode revealed that the model can identify relevant brain regions, aligned with physiological expectations, for each task and effectively combine the data from electrodes in these regions to achieve high performance. These findings underscore the resulting of integrating spatial information across brain regions to improve task decoding, offering new avenues for advancing BCI systems and neurotechnological applications.
لیست مقالات
لیست مقالات بایگانی شده
کنترل سطح آب درام بویلر های نیروگاهی با استفاده از الگوریتم کنترل تطبیقی جدید با در نظر گرفتن کارایی و افزایش عمر شیر کنترلی (مطالعه موردی کنترل سطح آب درام IP نیروگاه سیکل ترکیبی قم)
کیوان زاهدی - محمدحسین هاشمی - محسن منتظری
A COMPREHENSIVE DEEP LEARNING METHOD for SHORT-TERM LOAD FORECASTING
Mohammad Sayadlou - Mahdi Salay naderi - Mehrdad Abedi - Sajad Esmaeili - Mohammad Amini
Effect of Physical Characteristics on Artificial Neural Network Error Reduction for Indoor Propagation Modeling
SeyedehMounes Eslami - Amir Ahmad Shishegar
Deep Learning-Based Imitation of Human Actions for Autonomous Pick-and-Place Tasks
Anoosheh Saadati - Mehdi Tale Masouleh - Ahmad Kalhor
Temperature-Sensitive Tunable Nanoantenna Based on Phase Change Material (Ge2Sb2Te5) Substrate
Daniyal Khosh Maram - Seyed Asad Amirhosseini
بهبود تابآوری شبکههای توزیع سنتی در مرحله پیش از حادثه به کمک بازآرایی با الگوریتم ارگانیسم همزیستی
حسین بایسته - رضا شیردره - محمد احمدوند
Φ-OTDR Event Classification Using Machine Learning and Optical Signal Processing
Amir Babaoughli - Tohid Alizadeh - Seyed Sadra Kashef
بررسی عملکرد چرخاننده موجبری صفحه E با شبیهسازی جفتیده مغناایستایی-الکترومغناطیسی
زهرا عابدان - محمد حسین حسینی
Devloping a clustering routing algorithm based on the efficient hybrid methodology for WSN performance optimization
Neda Mazloomi - Sajad Haghzad Klidbary
Development of Reflectarray Antennas With a Deflected Beam: An Approach Based on Artificial Neural Networks
Mahdieh Esmaeiliporzani - Zahra Atlasbaf
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0