0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A Combined Channel Approach for Decoding Intracranial EEG Signals: Enhancing Accuracy through Spatial Information Integration
نویسندگان :
Maryam Ostadsharif Memar
1
Navid Ziaei
2
Behzad Nazari
3
1- دانشگاه صنعتی اصفهان
2- دانشگاه صنعتی اصفهان
3- دانشگاه صنعتی اصفهان
کلمات کلیدی :
Intracranial Electroencephalography (iEEG)،Neural decoding،iEEG decoder،Machine learning،Brain-computer interface (BCI)
چکیده :
Intracranial EEG (iEEG) recording, characterized by its high spatial and temporal resolution and superior signal-to-noise ratio (SNR), enables the development of precise brain-computer interface (BCI) systems for neural decoding. However, the invasive nature of the procedure significantly limits the availability of iEEG datasets, both in terms of the number of participants and the duration of recorded sessions. To overcome this, we propose a single-participant machine learning model optimized for decoding iEEG signals. The model employs 18 key features and operates in two modes: best channel and combined channel. The combined channel mode integrates spatial information from multiple brain regions, resulting in superior classification performance. Evaluations across three datasets—Music Reconstruction, Audio Visual, and AJILE12—demonstrate that the model in combined channel mode consistently outperforms the best channel mode across all classifiers. In the best-performing cases, Random Forest reached an F1 score of 0.81 ± 0.05 in the Music Reconstruction dataset, 0.82 ± 0.10 in the Audio Visual dataset, and XGBoost achieved an F1 score of 0.84 ± 0.08 in the AJILE12 dataset. Additionally, the analysis of brain region contributions in combined channel mode revealed that the model can identify relevant brain regions, aligned with physiological expectations, for each task and effectively combine the data from electrodes in these regions to achieve high performance. These findings underscore the resulting of integrating spatial information across brain regions to improve task decoding, offering new avenues for advancing BCI systems and neurotechnological applications.
لیست مقالات
لیست مقالات بایگانی شده
Q-Learning-Oriented Distributed Energy Management of Grid-Connected Microgrid
Esmat Samadi - Ali Badri - Reza Ebrahimpour
Adaptive Attitude Synchronization and Tracking Control of Spacecraft Formation Flying using Reaction Wheel without Angular Velocity Measurement
Amin Mihankhah - Ali Doustmohammadi
Intelligent Filter of $\mathcal{L}_{1}$ Adaptive Controller Using ANFIS System Optimized with Genetic Algorithm
Hossein Ahmadian - HeidarAli Talebi - Iman Sharifi
Adaptive Smooth Super Twisting Sliding Mode Control for Parkinson's Tremor Treatment
Reyhaneh Valibeik - ّFatemeh Jahangiri - Mostafa Abedi
An incentive compatible reward sharing approach for shard-based blockchains
Mojdeh Hemati - Mehdi Shajari
تحلیل حرارتی لیزر تابنده از سطح کاواک-عمودی با ساختار بازتابگر ترکیبی توری کنتراست بالا یکپارچه و بازتابشگر براگ
حسن هوشدار رستمی - وحید احمدی - سعید پهلوان
Differentiating Brain Connectivity Networks in ADHD and Normal Children using EEG
Roqaie Moqadam - Nazila Loghmani - Alireza Khorrami Moghaddam - Armin Allahverdy
A boosting based approach to handle imbalanced data
Sahar Hassanzadeh Mostafaei - Jafar Tanha - Negin Samadi - Soodabeh Imanzadeh - Nazila Razzaghi-Asl
Automotive radar target classification using micro-Doppler features
Amin Aghatabarroodbary - Mohammad Hassan Bastani - Fereidoon Behnia
Computational Insights into the Superior Performance of ψ-Graphene in Li-S Batteries: A DFT Study
Donna Rashidi - Maryam Abbasi - Leila Sadeghbeigy - Matin Bakhtavari - Ebrahim Nadimi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0