0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
A Combined Channel Approach for Decoding Intracranial EEG Signals: Enhancing Accuracy through Spatial Information Integration
نویسندگان :
Maryam Ostadsharif Memar
1
Navid Ziaei
2
Behzad Nazari
3
1- دانشگاه صنعتی اصفهان
2- دانشگاه صنعتی اصفهان
3- دانشگاه صنعتی اصفهان
کلمات کلیدی :
Intracranial Electroencephalography (iEEG)،Neural decoding،iEEG decoder،Machine learning،Brain-computer interface (BCI)
چکیده :
Intracranial EEG (iEEG) recording, characterized by its high spatial and temporal resolution and superior signal-to-noise ratio (SNR), enables the development of precise brain-computer interface (BCI) systems for neural decoding. However, the invasive nature of the procedure significantly limits the availability of iEEG datasets, both in terms of the number of participants and the duration of recorded sessions. To overcome this, we propose a single-participant machine learning model optimized for decoding iEEG signals. The model employs 18 key features and operates in two modes: best channel and combined channel. The combined channel mode integrates spatial information from multiple brain regions, resulting in superior classification performance. Evaluations across three datasets—Music Reconstruction, Audio Visual, and AJILE12—demonstrate that the model in combined channel mode consistently outperforms the best channel mode across all classifiers. In the best-performing cases, Random Forest reached an F1 score of 0.81 ± 0.05 in the Music Reconstruction dataset, 0.82 ± 0.10 in the Audio Visual dataset, and XGBoost achieved an F1 score of 0.84 ± 0.08 in the AJILE12 dataset. Additionally, the analysis of brain region contributions in combined channel mode revealed that the model can identify relevant brain regions, aligned with physiological expectations, for each task and effectively combine the data from electrodes in these regions to achieve high performance. These findings underscore the resulting of integrating spatial information across brain regions to improve task decoding, offering new avenues for advancing BCI systems and neurotechnological applications.
لیست مقالات
لیست مقالات بایگانی شده
Energy Efficiency Evaluation of a Line-Start Permanent Magnet Assisted Synchronous Reluctance Motor for Pump Application
Ali Jamali-Fard - Mojtaba Mirsalim
Small Target Detection Using an Enhanced Optimization Based Filter and Trajectory Tracking Via Pattern Matching Algorithm
Seyedeh Mahsa Zakipour Bahambari - Saeed Khankalantary
Deep Learning-Based Imitation of Human Actions for Autonomous Pick-and-Place Tasks
Anoosheh Saadati - Mehdi Tale Masouleh - Ahmad Kalhor
مکان یابی بهینه ذخیره سازهای متحرک انرژی الکتریکی با هدف بهبود تاب آوری سیستم توزیع قبل از طوفان
سبحان آقابابایی - محمد صادق سپاسیان
Attractors Manipulation in Denoising Autoencoders for Robust Phone Recognition
Shaghayegh Reza - Seyyed Ali Seyyedsalehi - Seyyedeh Zohreh Seyyedsalehi
A New Low Noise 4-Gb/s Serial CMOS MPPM Modulator
Erfan Alasvand Andekah - Noushin Ghaderi - Mostafa Pour Sayahi
تحلیل دینامیکی ماشین سنکرون مغناطیس دائم با آهنربای جانبی و تحلیل خطای اتصال کوتاه داخلی و ضعیف شدن آهنربا
آزیتا فتحی - پیمان نادری
سیستم تشخیص فعالیت مبتنی بر مدلسازی تصویری تنک اطلاعات حالت کانال و شبکه عصبی کانولوشنی
علیرضا ابوالقاسمی - سید محمد تقی المدرسی - سید مجتبی آقایی
A Novel RBFNN-Based Triple Terminal Sliding Mode Control for robotic manipulators
Mahdi Armoon - Marzie Lafouti - Babak Tavassoli - Hamid D.Taghirad
On the selection of superspreaders for advertising in science education using a new similarity measure
Sanaz Afsharian - Mohsen Heidari - Heidar Nosratzadeh - Mojgan Khalifeh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4