0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Forged Channel: A Breakthrough Approach for Accurate Parkinson's Disease Classification using Leave-One-Subject-Out Cross-Validation
نویسندگان :
SeyedAmirReza Hamidi
1
Kamal Mohamed-Pour
2
Mohammad Yousefi
3
1- دانشگاه صنعتی خواجه نصیرالدین طوسی
2- دانشگاه صنعتی خواجه نصیرالدین طوسی
3- دانشگاه صنعتی خواجه نصیرالدین طوسی
کلمات کلیدی :
Parkinson's Disease (PD)،Deep Learning،Convolutional Neural network،SPWVD Transformation،Electroencephalogram (EEG)،Classification
چکیده :
This paper introduces a novel technique called "Forged Channel," which aims to comprehensively represent EEG signals in order to achieve accurate classification of Parkinson's disease. The forged channel method prepares EEG signals in a manner that allows a deep learning model to effectively perceive all EEG channels within a single input. By employing this approach alongside a convolutional neural network, an impressive accuracy of 90.32% was achieved using leave-one-subject-out cross-validation. This performance closely reflects real-world conditions, highlighting the superiority of our method compared to similar approaches.
لیست مقالات
لیست مقالات بایگانی شده
Impact of Sierpinski fractal shape on the performance of ultrathin-film silicon solar cells
Mohammad Ali Shameli - Sayyed Reza Mirnaziry - Leila Yousefi
Depth Estimation in Monocular Images of Inside the Sewer Pipes for Navigation of Inspection Robots
Zeinab Maroufi - Alireza Hadi Hosseinabadi - Reza Askari moghadam
Designing of Multilayer Planar Spiral Air-Core Inductor for Power Electronic Applications
Mohammad Khakroei - Mohsen Mostafaei - Mansour Arefian - Afshin Rezaei-Zare - Majid Najafi Zarmehri
Defects Dynamics in Multilayer h-BN Resistive Switching Memories: A Molecular Dynamics Investigation
Omid Babaeinejad - Maryam Keshavarz Afshar - Ebrahim Nadimi
Secure Control System Using Iterative Secret Sharing
Younes Esmaeili - Mohammad Haeri - Saeed Adelipour
A K-Band Ultra-Low-Power High-Linearity Down-Conversion Mixer in CMOS Technology
Kayvan Qolami - جواد یاوندحسنی
A Transformer less Quadratic Boost DC-DC Converter with Continuous Input Current and a Few Number of Components, Based on Classical Boost and Cuk Converter Suitable for Renewable Applications
Saeed Mahdizadeh - Reza Sharifi Shahrivar - Hossein Gholizadeh - Ebrahim Afjei
Evaluating the Impact of Operation Scheduling Methods on Microgrid Reliability Using Monte Carlo Simulation
Mahsa Omri - Mohammad Jooshaki - Ali Abbaspour - Mahmud Fotuhi-Firuzabad
Improving CycleGAN-VC2 Voice Conversion by Learning MCD-Based Evaluation and Optimization
Majid Behdad - Davood Gharavian
Design and Implementation of a fast flexible and efficient multichannel digital filter for hearing aids
Mohammadsadegh Poushnegar - Mahmoud Tabandeh - Meysam Nesary Moghadam - Farzam Gilani - Ali Aghakasiri
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3