0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
BLSTM-Convolutional Neural Networks for Respiratory Disease Diagnosis
نویسندگان :
Mohammad Hassan Khamechian
1
Mohammad Reza Akbarzadeh Tootoonchi
2
1- دانشگاه فردوسی مشهد
2- دانشگاه فردوسی مشهد
کلمات کلیدی :
respiratory diseases،convolutional neural network،BLSTM-CNN،Audio features
چکیده :
Even before the coronavirus, respiratory illnesses could not be neglected. These diseases are responsible for a sizeable fraction of annual global population deaths. Numerous and diverse respiratory illnesses exist. Subtypes of this illness include chronic obstructive pulmonary diseases, respiratory cancers such as lung and laryngeal malignancies, respiratory tract infections, and coronavirus. This project suggests combining convolutional neural networks with bidirectional long short-term memory. The suggested approach is superior to other contemporary papers since it accurately (average of 92% accuracy) identifies more respiratory disorders (6 respiratory diseases and healthy peaple). In recent years, because of the high precision and noise resistance of convolutional neural networks, they have been utilized in a variety of applications, including signal and image processing. Furthermore, The BLSTM approach is the most intelligent way to solve time series challenges since it saves the dependencies of input sequences in models and can deal with difficulties including vanishing gradients. Therefore, a combination of these two approaches has been used to detect some respiratory disorders using the audio respiration signal from a digital stethoscope. This article also uses data augmentation and filtering to create more data as the preprocessing methods. The ICBHI'17 database, the richest and most comprehensive collection of respiration sound signals available to the public, serves as the foundation for this investigation.
لیست مقالات
لیست مقالات بایگانی شده
High efficiency Continuous class J/B power amplifier design with 130% Fractional Bandwidth
Sara Aghajani - Mahmoud Kamarei - Marzieh Chegini
Bidirectional Isolated DC/DC Dual-Active-Bridge Converters Optimum Soft-Switching Control Method for Electrical Vehicle Applications
Shokoufeh Valadkhani - Mojtaba Mirsalim - Gevork B. Gharehpetian
Stability Improvement in Weak Grid-Tied DFIG-based WECS Employing Adaptive Virtual Impedance Strategy Based on Machine Learning Considering the LVRT Constraint
Mohammad Hossein Shaabani - Behrooz Vahidi - Navid Dehghan
یک روش موازی برای تخمین حالت سریع در سیستم های قدرت با ابعاد بزرگ با استفاده از تکنیک جداسازی گراف
بهنام کریم سرمدی - احمد صالحی دوبخشری
مدل سازی و شبیه سازی جداکننده پرتو کوانتومی و تداخل گر ماخ زندر کوانتومی
محمد جواد شریفی
Real-Time Stress Detection via Photoplethysmogram Signals: Implementation of a Combined Continuous Wavelet Transform and Convolutional Neural Network on Resource-Constrained Microcontrollers
Yasin Hasanpoor - Amin Rostami - Bahram Tarvirdizadeh - Khalil Alipour - Mohammad Ghamari
Stability Analysis for the Non-linear Model Predictive Control of a Flexible Joint Manipulator with Dynamics Uncertainties
Mohamadreza Satvati - Hossein Karimpour - Keivan Torabi - Mohammad Motaharifar
Deep SqueezeNet Based Technique for Detection of High Impedance Arcing Faults in Electric Power Distribution Networks
Amin Mohammadi - Mohsen Jannati - Mohammadreza Shams
Control of optical bistability in one-dimensional photonic crystals with a central layer doped with Landa-type three-level atoms using atomic and laser parameters
Akbar Ashrafabadi - Siamak Khademi - Ghasem Naeimi
Model Predictive Control for Interconnected Systems with Communication Delays
Reza Mohammadikia - Mahsan Tavakoli-Kakhki
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2