0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
BLSTM-Convolutional Neural Networks for Respiratory Disease Diagnosis
نویسندگان :
Mohammad Hassan Khamechian
1
Mohammad Reza Akbarzadeh Tootoonchi
2
1- دانشگاه فردوسی مشهد
2- دانشگاه فردوسی مشهد
کلمات کلیدی :
respiratory diseases،convolutional neural network،BLSTM-CNN،Audio features
چکیده :
Even before the coronavirus, respiratory illnesses could not be neglected. These diseases are responsible for a sizeable fraction of annual global population deaths. Numerous and diverse respiratory illnesses exist. Subtypes of this illness include chronic obstructive pulmonary diseases, respiratory cancers such as lung and laryngeal malignancies, respiratory tract infections, and coronavirus. This project suggests combining convolutional neural networks with bidirectional long short-term memory. The suggested approach is superior to other contemporary papers since it accurately (average of 92% accuracy) identifies more respiratory disorders (6 respiratory diseases and healthy peaple). In recent years, because of the high precision and noise resistance of convolutional neural networks, they have been utilized in a variety of applications, including signal and image processing. Furthermore, The BLSTM approach is the most intelligent way to solve time series challenges since it saves the dependencies of input sequences in models and can deal with difficulties including vanishing gradients. Therefore, a combination of these two approaches has been used to detect some respiratory disorders using the audio respiration signal from a digital stethoscope. This article also uses data augmentation and filtering to create more data as the preprocessing methods. The ICBHI'17 database, the richest and most comprehensive collection of respiration sound signals available to the public, serves as the foundation for this investigation.
لیست مقالات
لیست مقالات بایگانی شده
Innovative Pathway Optimization for Autonomous Drones in Urban Landscapes Using Integrated Techniques
Seyed Ahmad Abtahi - M.A. Amiri Atashgah - Bahram Tarvirdizadeh - Mohammad Habashiniak
A New High Step-Up Quasi Z-Source DC-DC Converter Using Buffer and Switched Capacitor Techniques
Erfan Meshkizadeh - Ebrahim Afjei - Morteza Kheradmandi
Diagnosis of Covid 19 disease, flu, allergies, colds
Mahyar Mohammady - Marzieh Kamali
A New High gain Transformerless DC-DC Converter with Low Voltage Stress on Power Switches
Amirreza Bahadori - Ali Nadermohammadi - Mohammad Maalandish - Seyed Hossein Hosseini - Mehran Sabahi
تحلیل حرارتی لیزر تابنده از سطح کاواک-عمودی با ساختار بازتابگر ترکیبی توری کنتراست بالا یکپارچه و بازتابشگر براگ
حسن هوشدار رستمی - وحید احمدی - سعید پهلوان
Evanescent-to-Propagating Wave Conversion Using Continuous High-Order Dielectric Metasurfaces
Hamid Akbari Chelaresi - Pooria Salami - Leila Yousefi
Blind angle and angular range detection in planar and limited-view geometries for photoacoustic tomography
Soheil Hakakzadeh - Zahra Kavehvash
Infrared Small Target Detection Based on Directional Mean Difference and Compactness
Mohammad Rahbari Dust - MASOUMEH AZGHANI
مشاهدهپذیری در فرآیندهای گراف محدود باند بدونجهت و جهتدار با استفاده از تعداد محدودی از مشاهدات
حمیدرضا خسرویان - محمود کریمی
Study of Multiple Teeth Linear Switched and Hybrid Reluctance Motors
Mohammad Amin Jalali Kondelaji - Ali Ghaffarpour - Mojtaba Mirsalim
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3