0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Machine Learning-based Fundamental Stock Prediction Using Companies’ Financial Reports
نویسندگان :
Hossein Rezaei
1
Kamran Abdi
2
Mohsen Hooshmand
3
1- دانشگاه تحصیلات تکمیلی علوم پایه زنجان
2- دانشگاه تحصیلات تکمیلی علوم پایه زنجان
3- دانشگاه تحصیلات تکمیلی علوم پایه زنجان
کلمات کلیدی :
Stock market prediction،Fundamental feature analysis،Dataset generation،Machine learning،Time series،Statistical conversion
چکیده :
Portfolio management is a significant and crucial goal in investments. Therefore, the efficient prediction of the shares and securities plays an important role in highly profitable incomes. The fundamental stock analysis is a powerful and fruitful method of predicting the long-term of shares. However, further investigation in this area suffers from the lack of online fundamental features. This paper provides a fundamental feature dataset from TSE. Its features are extracted from the financial reports of companies and its prediction targets are both the return and risk values of each share. Moreover, this work investigates the effect of utilizing time dependency, absent in a vast majority of machine learning methods, on the prediction performance. Last, we propose machine-learning methods, i.e., logistic regression and gradient boosting to analyze the performance of fundamental stock prediction.
لیست مقالات
لیست مقالات بایگانی شده
Identifying Influential Nodes in Complex Networks by Multiple Attributes Model
Shima Esfandiari - Mostafa Fakhrahmad
Fractional-Order Model Prediction Attitude Control For Unmanned Aerial Vehicles
Hossein Hassanzadeh Yaghini
Adaptive Control of Telerehabilitation Systems in The Framework of Multi-Agent Systems
Mohammadreza Sheykh - Heidar Ali Talebi - ّIman Sharifi
Stability Analysis of Distributed-Order Systems: a Lyapunov Scheme
Vahid Badri
Crypto Currency Price Prediction Using Preprocessed Scaled Inputs LSTM Model Enhanced by Improved Gray Wolf Optimization
Amir RabbaniParsa - Mahboobeh Hoshmand - Seyyed Abed Hosseini
Low Complexity Single-Snapshot DOA Estimation Using Adaptive Filtering
Mojtaba Amiri - Mohammadreza Nargesi - Ali Olfat
Efficient signal detection via compressive sensing in uplink massive MIMO systems
Soroush Mesforush Mashhad - Mojtaba Amiri - Ali Olfat
An Improved Hybrid Recommender System: Integrating Document Context-Based and Behavior-Based Methods
Meysam Varasteh - Mehdi Soleiman Nejad - Hadi Moradi - Mohammad Amin Sadeghi - Ahmad Kalhor
Improving the Performance of ST-GCN on Multi-Site rs-fMRI Data Through Time Repetition Alignment
Mehrana Calagari - Hamidreza Hakimdavoodi
تخمین غلظت ید و زینان در یک نیروگاه هستهای با استفاده از فیلتر کالمن بیرد تحت شرایط مختلف توان راکتور
حسین زحمتکش - حسین الیاسی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3