0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Machine Learning-based Fundamental Stock Prediction Using Companies’ Financial Reports
نویسندگان :
Hossein Rezaei
1
Kamran Abdi
2
Mohsen Hooshmand
3
1- دانشگاه تحصیلات تکمیلی علوم پایه زنجان
2- دانشگاه تحصیلات تکمیلی علوم پایه زنجان
3- دانشگاه تحصیلات تکمیلی علوم پایه زنجان
کلمات کلیدی :
Stock market prediction،Fundamental feature analysis،Dataset generation،Machine learning،Time series،Statistical conversion
چکیده :
Portfolio management is a significant and crucial goal in investments. Therefore, the efficient prediction of the shares and securities plays an important role in highly profitable incomes. The fundamental stock analysis is a powerful and fruitful method of predicting the long-term of shares. However, further investigation in this area suffers from the lack of online fundamental features. This paper provides a fundamental feature dataset from TSE. Its features are extracted from the financial reports of companies and its prediction targets are both the return and risk values of each share. Moreover, this work investigates the effect of utilizing time dependency, absent in a vast majority of machine learning methods, on the prediction performance. Last, we propose machine-learning methods, i.e., logistic regression and gradient boosting to analyze the performance of fundamental stock prediction.
لیست مقالات
لیست مقالات بایگانی شده
Development of Iterative Learning Control Method Based on Markov Parameters for High-Order Discrete-Time Singular Systems
Meysam Azhdari - Tahereh Binazadeh - Ali Gholami
True Class-E Design For Inductive Coupling Wireless Power Transfer Applications
Ali Asghar Razavi Haeri - Aminghasem Safarian - Ali Fotowat-Ahmady
A Novel HVDC Transmission System Based on Z-Source Converter
Mehdi Zareian Jahromi - Mohammadreza Mousavikhademi - Ebrahim Kazemi
تخمین افسردگی مبتنی بر صوت با استفاده از بانک فیلتر و شبکه عصبی ResNet
علی نیک خراسانی - محمدرضا اکبرزاده توتونچی - مجید غیورمبرهن
CT Super-Resolution Using Arbitrary Scale Diffusion Model
Mahsa Nadafi Ghahnavieh - Saeed Masoudnia - Hamid Soltanian-Zadeh
Controllerless SDN: A Novel Architecture to Improve Software-Defined Networks Security
Sayfollah Rohollahi - Siavash Khorsandi
Selecting the Economical Energy Storage System for Photovoltaic Power Plants
Zahra Moradi-Shahrbabak
Development of Iterative Learning Control Method for Trajectory Tracking in Two-Dimensional Discrete-Time Systems
Meysam Azhdari - Tahereh Binazadeh - Soheila Abedi
Deep SqueezeNet Based Technique for Detection of High Impedance Arcing Faults in Electric Power Distribution Networks
Amin Mohammadi - Mohsen Jannati - Mohammadreza Shams
ارائه یک روش جدید مبتنی بر ترکیب محدب برای مدلسازی اُفت دریچههای گاز بهمنظور حل مساله برنامهریزی تولید
حسین شریف زاده
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0