0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Deep SqueezeNet Based Technique for Detection of High Impedance Arcing Faults in Electric Power Distribution Networks
نویسندگان :
Amin Mohammadi
1
Mohsen Jannati
2
Mohammadreza Shams
3
1- دانشگاه اصفهان
2- دانشگاه اصفهان
3- دانشگاه اصفهان
کلمات کلیدی :
High Impedance Arcing Fault،Electric Power Distribution Networks،Renewable Energy Sources،Deep Neural Network،Transfer Learning،SqueezeNet Architecture.
چکیده :
— High Impedance Arcing Faults (HIAF) have always been considered an influential factor in the protection of electric power distribution networks (EPDNs). Characteristics such as low current levels in these faults causes the malfunction of conventional protection devices because of incorrect detection. Therefore, new methods should be provided that are able to detect the HIAF from other events in the EPDN based on these characteristics. Most of the previous fault detection techniques are dependent on a massive volume of training data to detect and classify the faults and other events, requiring a lot of time for data extraction. Furthermore, in some cases accessibility to these data is too difficult and sometimes impossible. Therefore, this paper proposes a novel protection technique based on a deep-learning algorithm to detect and classify the HIAF from other events, and also to significantly reduce the dependence on a large amount of training data. The proposed technique uses a small amount of data to extend the knowledge of pre-trained SqueezeNet architecture to HIAF detection and classification problems, thereby reducing the dependence of the method on a large amount of training data. The simulation results in the presence of renewable energy sources on the modified IEEE 13-bus and 34-bus EPDNs indicate the high accuracy of the proposed technique in categorizing different network events.
لیست مقالات
لیست مقالات بایگانی شده
Application of Statistical Techniques and Machine Learning in Forecasting Distribution Network Load: A Real Case Study on the Iranian Power System
Hossein Jafari - Mohammad Sadegh Sepasian - Fatemeh Teimori
The Effect of Optimal PMU Placement in Power System State Estimation considering the Seasonal Load Curve
Seyed Hamed Mir Mohammad Ali Roudaki - Mehrdad Abedi - Iraj Pourkeivani
A Practical ACO-OFDM Link with an Efficient Timing Recovery Pattern
Maryam Sadeghi - Masoud Johar - Mahdi Shabany
Enhancing Precision in Dermoscopic Imaging using TransUNet and CASCADE
Mahdi Niknejad - Mahdi Firouzbakht - Maryam Amirmazlaghani
A Novel PM-Assisted Linear Switched Reluctance Motor
Matin Vatani - Mojtaba Mirsalim - Javad Shokrollahi Moghani
Phase-Only Array Antenna Beamforming with Minimum Peak Sidelobe Level and Minimum Power Loss Criteria
Mahdi Hatam
Outage and Sum-Rate Analysis for mCAP-NOMA in Visible Light Communication Under Users' Mobility
Amir Oshtoudan - Seyed Mohammad Sajad Sadough
ارتقای تاب آوری بارهای شبکه های توزیع تحت رویدادهای HILP از طریق امکان سنجی تشکیل ریزشبکه
محمدحسین تاجمیری - محسن حمزه
Brain Tumor Segmentation using Multimodal MRI and Convolutional Neural Network
Nazila Loghmani - Roqaie Moqadam - Armin Allahverdy
Identifying Singular 2-D Systems Using 1-D Methods
Masoud Shafiee - Kamyar Azarakhsh
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1