0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Deep SqueezeNet Based Technique for Detection of High Impedance Arcing Faults in Electric Power Distribution Networks
نویسندگان :
Amin Mohammadi
1
Mohsen Jannati
2
Mohammadreza Shams
3
1- دانشگاه اصفهان
2- دانشگاه اصفهان
3- دانشگاه اصفهان
کلمات کلیدی :
High Impedance Arcing Fault،Electric Power Distribution Networks،Renewable Energy Sources،Deep Neural Network،Transfer Learning،SqueezeNet Architecture.
چکیده :
— High Impedance Arcing Faults (HIAF) have always been considered an influential factor in the protection of electric power distribution networks (EPDNs). Characteristics such as low current levels in these faults causes the malfunction of conventional protection devices because of incorrect detection. Therefore, new methods should be provided that are able to detect the HIAF from other events in the EPDN based on these characteristics. Most of the previous fault detection techniques are dependent on a massive volume of training data to detect and classify the faults and other events, requiring a lot of time for data extraction. Furthermore, in some cases accessibility to these data is too difficult and sometimes impossible. Therefore, this paper proposes a novel protection technique based on a deep-learning algorithm to detect and classify the HIAF from other events, and also to significantly reduce the dependence on a large amount of training data. The proposed technique uses a small amount of data to extend the knowledge of pre-trained SqueezeNet architecture to HIAF detection and classification problems, thereby reducing the dependence of the method on a large amount of training data. The simulation results in the presence of renewable energy sources on the modified IEEE 13-bus and 34-bus EPDNs indicate the high accuracy of the proposed technique in categorizing different network events.
لیست مقالات
لیست مقالات بایگانی شده
Design and Simulation of Modified Salisbury Spatial Filter using Genetic Algorithm for Improving Optical Image Processing
Mohammadmahdi Modabberanbeh - Hassan Kaatuzian - Amir Nader Askarpour
بهبود بازدهی انرژی در اینترنت اشیاء باند باریک با وفقیسازی لینک به کمک یادگیری عمیق
سمانه امیریان - محمدعلی سبقتی
Joint Fairness, Fragmentation, and Physical Layer Impairments Aware Routing, Spectrum and Modulation Level Allocation in Elastic Optical Networks
Hassan Khanahmadzadeh - Arash Rezaee - Lotfollah Beygi
Jacobian matrix calculation in scattering from dielectric objects using semi-explicit MoM
Fatemeh Mandegari - Leila Ahmadi - Amir Ahmad Shishegar
Millimeter-Wave Imaging System: A Brief Study on System Performance
Behnam Ghandi - Sobhan Dabidian - Sina Zeraatkar - Zahra Kavehvash
An Improved U-Type Inter-Modular Biased-Flux Permanent Magnet Motor
Ehsan Farmahini Farahani - Mohammad Afrank - Mojtaba Mirsalim - Javad Shokrollahi Moghani
Automated Optic Disc Segmentation in Low-Quality Retinopathy of Prematurity Retinal Images
Abolfazl Karimiyan Abdar - Reza AghaeiZadeh Zoroofi - Naser Shoeibi - Sare Safi - Alireza Ramezani - Homayoun Nikkhah - Hamid Safi - Mohammad Reza Ansari Astaneh
Three Improved Boost Topologies with Continuous Input/Output Currents Suitable for High-Voltage Applications
Hossein Gholizadeh - Hesam Ehsan - Alireza Poursalan - Mohammad Hamed Samimi
روشی نوین مبتنی بر سیمپلکسهای متوالی برای غلبه بر چالشهای حل پخش بار بهینه
فاطمه زاده محمدی - حسین شریف زاده
Q-Learning-Oriented Distributed Energy Management of Grid-Connected Microgrid
Esmat Samadi - Ali Badri - Reza Ebrahimpour
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4