0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Deep SqueezeNet Based Technique for Detection of High Impedance Arcing Faults in Electric Power Distribution Networks
نویسندگان :
Amin Mohammadi
1
Mohsen Jannati
2
Mohammadreza Shams
3
1- دانشگاه اصفهان
2- دانشگاه اصفهان
3- دانشگاه اصفهان
کلمات کلیدی :
High Impedance Arcing Fault،Electric Power Distribution Networks،Renewable Energy Sources،Deep Neural Network،Transfer Learning،SqueezeNet Architecture.
چکیده :
— High Impedance Arcing Faults (HIAF) have always been considered an influential factor in the protection of electric power distribution networks (EPDNs). Characteristics such as low current levels in these faults causes the malfunction of conventional protection devices because of incorrect detection. Therefore, new methods should be provided that are able to detect the HIAF from other events in the EPDN based on these characteristics. Most of the previous fault detection techniques are dependent on a massive volume of training data to detect and classify the faults and other events, requiring a lot of time for data extraction. Furthermore, in some cases accessibility to these data is too difficult and sometimes impossible. Therefore, this paper proposes a novel protection technique based on a deep-learning algorithm to detect and classify the HIAF from other events, and also to significantly reduce the dependence on a large amount of training data. The proposed technique uses a small amount of data to extend the knowledge of pre-trained SqueezeNet architecture to HIAF detection and classification problems, thereby reducing the dependence of the method on a large amount of training data. The simulation results in the presence of renewable energy sources on the modified IEEE 13-bus and 34-bus EPDNs indicate the high accuracy of the proposed technique in categorizing different network events.
لیست مقالات
لیست مقالات بایگانی شده
Design and Implementation of a Flexible CNN Accelerator for Fast Real-Time Object Detection on FPGA
Emadodin Sakhaee - Mahdi Kalbasi
Kernel-Based Band Selection for Hyperspectral Image Classification
Mehdi Kamandar
RCS Calculation of a Symmetrical Microstrip Array Using Discrete Bodies of Revolution Method
Hossein Mohammadzadeh - Abolghasem Zeidaabadi Nezhad - Zaker Hossein Firouzeh
HIV Virus States Estimation by Extended Kalman Particle Filter
Meysam Hooshmand - Mahtab Sharifian - Hamid Sharifian - Javad Mahmoudi
Event-triggered SOF Control of Descriptor Switched Systems
Hamidreza Ahmadzadeh - Masoud Shafiee - Iman Zamani
A 1.2GHz wide bandwidth integer-N type-I PLL
Javad Tavakoli - Hossein Yaghobi - Samad Sheikhaei
Improving Wind Turbines Blades Damage detection by using YOLO BoF and BoS
Reza Mohammadi - Saeed Sharifian
تخمین افسردگی مبتنی بر صوت با استفاده از بانک فیلتر و شبکه عصبی ResNet
علی نیک خراسانی - محمدرضا اکبرزاده توتونچی - مجید غیورمبرهن
Design and Analysis of Three-Step Cyclic Vernier Time-to-Digital Converter
ُSara Mansouri - Hamidreza Rezaee-Dehsorkh - Nassim Ravanshad
Optimization of a three-phase Induction Motor for Electric Vehicles Based on Hook-Jews Optimization Method
Arash Mousaei - Naghi Rostami - Mohammad Bagher Bannae Sharifian
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4