0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Development of Iterative Learning Control Method for Trajectory Tracking in Two-Dimensional Discrete-Time Systems
نویسندگان :
Meysam Azhdari
1
Tahereh Binazadeh
2
Soheila Abedi
3
1- دانشگاه صنعتی شیراز
2- دانشگاه صنعتی شیراز
3- دانشگاه صنعتی شیراز
کلمات کلیدی :
partial differential equations،2-D systems،ILC،discrete-time systems،1-D rectangular systems،WAM
چکیده :
In this paper, an Iterative Learning Control (ILC) scheme is proposed to address the tracking problem of two-dimensional (2-D) discrete-time systems. To achieve the control objective, by using the model called Wave Advanced Model (WAM), the 2-D model of the system is converted to a one-dimensional (1-D) model while the systems describing matrices are rectangular with variable dimensions. This makes the stability analysis more complicated. By deriving the input-output transformation description and developing the ILC algorithm, a P-type ILC control law is proposed. The sufficient condition of the asymptotic convergence of the proposed controller is derived from the considered repetitive process. It is proved that under the proposed method, the norm of tracking error is converged to zero and consequently the system output can track the desired trajectory with acceptable performance. Besides, the effectiveness of the proposed method is examined by providing the simulation results of a practical example.
لیست مقالات
لیست مقالات بایگانی شده
Deep Learning-Based Imitation of Human Actions for Autonomous Pick-and-Place Tasks
Anoosheh Saadati - Mehdi Tale Masouleh - Ahmad Kalhor
Soft Decision Adaptive Deep Learning Detection for Enhanced Massive MIMO Performance
Farnaz Sedaghati - Mojtaba Amiri - Ali Olfat
Improved Spectral Efficiency of RIS-aided 6G Communication using Deep Learning
Zahra Zahedi - Mehrdad Ardebilipur - Fatemeh Dehrouye
شبیه سازی یک حسگر با استفاده از یک میکرو تشدیدگر اویلری
مریم دهقانیان - محسن حاتمی
A Time-Based Analogue-to-Digital Converter for ECG Applications
Atiyeh Karimlou - Mohammad Yavari
بکارگیری یادگیری عمیق در ارزیابی به هنگام پایداری ولتاژ کوتاه مدت با استفاده از داده های اندازه گیری فازوری
امیرحسین باباعلی - محمدتقی عاملی
A novel approach for recommender systems based on query likelihood and sentiment analysis
Mohammadreza Soltaninezhad - Alireza Basiri
یادگیری متری عمیق جهت شناسایی افراد
امیرعلی نسیمی - مهران صفایانی - مائده احمدی - عبدالرضا میرزائی
Analysis of the DC Bias Effects on the Transformer Vibration Using a Multi-field Coupling Model
Amir Esmaeili Nezhad - Mohammad Hamed Samimi
Numerical study of different pillar shapes using deterministic lateral displacement method for particle separation
Mohammad Mahdi Eskandari Sani - Mahdi Aliverdinia - Mahdi Moghimi Zand
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4