0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Using Convolutional Neural Networks for Sudden Cardiac Death prediction
نویسندگان :
Sara Tavazo
1
Farideh Ebrahimi
2
1- دانشگاه صنعتی نوشیروانی بابل
2- دانشگاه صنعتی نوشیروانی بابل
کلمات کلیدی :
Electrocardiogram (ECG)،(Sudden Cardiac Death (SCD،(Convolutional neural networks (CNN،( Continuous Wavelet Transform (CWT
چکیده :
The purpose of this study was to predict Sudden Cardiac Death early to treat cardiac disorders effectively and reduce mortality caused by a delayed diagnosis. Traditional methods have relied on analyzing Electrocardiogram and Heart Rate Variability signals for SCD prediction; their success, however, heavily depends on the feature extraction process. Therefore, Convolutional Neural Networks seem to be a suitable alternative for automatic feature extraction. This study, for the first time, presents a method for predicting SCD 60 minutes before it occurs using one-dimensional and two-dimensional CNNs. At first, a Model based on the One-Dimensional Convolutional Neural Network was used for SCD prediction, and by the proper setting of parameters, an accuracy of %98.6 was obtained. Then, due to the success of CNNs in image analysis, the ECG signal was converted to Two-Dimensional images to be used as input in 2-Dimensional Convolutional Neural Network, which by applying proposed architecture, the classification accuracy increased to 99%. Finally, in order to reduce complexity, some changes were made in the 2D-CNN based proposed algorithms. These changes include reducing the number of filters, reducing the number of final parameters of the network by adding a global average-pooling layer before the fully connected layer, and adding one more convolution layer to preserve the efficiency of the network. After applying these changes, the accuracy was %98.68 in SCD prediction.In addition to being simple and effective, the methods proposed in this research provide the highest accuracy and maximum prediction time.
لیست مقالات
لیست مقالات بایگانی شده
TELLM: Advancements in Knowledge Incorporation and Task-specific Enhancements of Large Language Models
Fatemeh Feizi - Amirhossein Hossein Nia - MohammadMahdi Hemmatyar - Fatemeh Rahimi - Farhoud Jafari Kaleibar
A new double rotor switched reluctance motor aiming at average torque improvement
Reza Rezaei - Seyed Reza Mousavi Aghdam
Depth Estimation in Monocular Images of Inside the Sewer Pipes for Navigation of Inspection Robots
Zeinab Maroufi - Alireza Hadi Hosseinabadi - Reza Askari moghadam
High-sensitive symmetric Fano optical cavity sensor for refractive index detection based on photonic crystal structure
Mohammad Hasan Rezaei - Mohammad Hasan Yavari
Bit Error Rate Analysis for a Mixed Underwater OWC-FSO Relaying System in the Presence of Pointing Error
Mahdis Saghaee Jahed - Meysam Ghanbari - Seyed Mohammad Sajad Sadough
کنترل توربین بادی با استفاده از کنترلکننده پیشبین تابعی توسعهیافته
آرمین باقری - محمد حائری
Message Overhead Control Using P-Epidemic Routing Method in Resource-Constrained Heterogeneous DTN
Mohammad Yousef Darmani - Shiva Karimi
Optimal Scheduling of Active Distribution Networks with High Penetration of Plug-in Electric vehicles and Renewables Using Grasshopper Optimization Algorithm
Seyyed Hadi Mousavi - Varahram Janatifar - Arya Abdolahi - Mitra Sarhangzadeh
Type-2 fuzzy expert system for management of smart home with combining renewable resources
Ali Beheshtikhoo - Mahdi Pourgholi - Iman Khazaee
Experimental Study on Automatically Assembling Custom Catering Packages With a 3-DOF Delta Robot Using Deep Learning Methods
Reihaneh Yourdkhani - Arash Tavoosian - Navid Asadi Khomami - Mehdi Tale Masouleh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3