0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Using Convolutional Neural Networks for Sudden Cardiac Death prediction
نویسندگان :
Sara Tavazo
1
Farideh Ebrahimi
2
1- دانشگاه صنعتی نوشیروانی بابل
2- دانشگاه صنعتی نوشیروانی بابل
کلمات کلیدی :
Electrocardiogram (ECG)،(Sudden Cardiac Death (SCD،(Convolutional neural networks (CNN،( Continuous Wavelet Transform (CWT
چکیده :
The purpose of this study was to predict Sudden Cardiac Death early to treat cardiac disorders effectively and reduce mortality caused by a delayed diagnosis. Traditional methods have relied on analyzing Electrocardiogram and Heart Rate Variability signals for SCD prediction; their success, however, heavily depends on the feature extraction process. Therefore, Convolutional Neural Networks seem to be a suitable alternative for automatic feature extraction. This study, for the first time, presents a method for predicting SCD 60 minutes before it occurs using one-dimensional and two-dimensional CNNs. At first, a Model based on the One-Dimensional Convolutional Neural Network was used for SCD prediction, and by the proper setting of parameters, an accuracy of %98.6 was obtained. Then, due to the success of CNNs in image analysis, the ECG signal was converted to Two-Dimensional images to be used as input in 2-Dimensional Convolutional Neural Network, which by applying proposed architecture, the classification accuracy increased to 99%. Finally, in order to reduce complexity, some changes were made in the 2D-CNN based proposed algorithms. These changes include reducing the number of filters, reducing the number of final parameters of the network by adding a global average-pooling layer before the fully connected layer, and adding one more convolution layer to preserve the efficiency of the network. After applying these changes, the accuracy was %98.68 in SCD prediction.In addition to being simple and effective, the methods proposed in this research provide the highest accuracy and maximum prediction time.
لیست مقالات
لیست مقالات بایگانی شده
Brain Tumor Segmentation Using U-net and U-net++ Networks
Seyyed Ali Mortazavi-Zadeh - Alireza Amini - Hamid Soltanian-Zadeh
Adaptive Fault Tolerant Control in Time-Varying Formation of Multi-Agent Systems
Elham Bahrampour - Mohammad Tavazoei
Design and Electromagnetic Analysis of Brushless Salient Pole Switching Flux Synchronous Generator with DC Auxiliary Field Winding for Wind Energy Converter Systems
Seyed Hamed Bibak - Mohammad Hossein Mousavi - Moslem Geravandi
Improving Adaptive Algorithm to Reduce Grounding System Impedance Computing Time
Soheil Rahnamayian Jelodar - Seyed Hossein Hesamedin Sadeghi - Reza Rahmani - Mohammad Ali Narooie Dehchil - Hossein Askarian Abyaneh
Photonic Crystal-based Plasmonic Biosensor with Low-cost and High-sensitivity Properties
Mahdieh Ahmadi Motlagh - Mahdieh Bozorgi - Mahmood Rafaei-Booket
Synergizing ISAC and OTFS in a Non-GB-OMA Downlink Framework
Ghasem Saeidi - Hamid Saeedi-sourck
طراحی و تحلیل یک حسگر پلاسمونیک ضریب شکست بر پایه فیبر بلور فتونی با هدف بهبود مشخصات فنی
علی یاوری - حسن کاتوزیان - سارا قلی نژاد شفق
Hybrid PI-SOSM Controller for Battery and Supercapacitor Integration in Electric Vehicles
Maede Azimi - Ghasem Rezazadeh - Mohsen Hamzeh
A novel CMRR Enhancement technique in fully-differential Class-AB OTAs
Amirhossein Sabour - Mahsa Ramezan Pour - Mohammad Yavari
بررسی تاثیر دینامیکی سیستمهای انرژی خورشیدی متصل به شبکه بر بارگذاری ترانسفورماتور و بهبود عملکرد شبکه فشار ضعیف توزیع نیروی برق
مهدی محمدی - رضا خدادی - علی معصومی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0