0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Using Convolutional Neural Networks for Sudden Cardiac Death prediction
نویسندگان :
Sara Tavazo
1
Farideh Ebrahimi
2
1- دانشگاه صنعتی نوشیروانی بابل
2- دانشگاه صنعتی نوشیروانی بابل
کلمات کلیدی :
Electrocardiogram (ECG)،(Sudden Cardiac Death (SCD،(Convolutional neural networks (CNN،( Continuous Wavelet Transform (CWT
چکیده :
The purpose of this study was to predict Sudden Cardiac Death early to treat cardiac disorders effectively and reduce mortality caused by a delayed diagnosis. Traditional methods have relied on analyzing Electrocardiogram and Heart Rate Variability signals for SCD prediction; their success, however, heavily depends on the feature extraction process. Therefore, Convolutional Neural Networks seem to be a suitable alternative for automatic feature extraction. This study, for the first time, presents a method for predicting SCD 60 minutes before it occurs using one-dimensional and two-dimensional CNNs. At first, a Model based on the One-Dimensional Convolutional Neural Network was used for SCD prediction, and by the proper setting of parameters, an accuracy of %98.6 was obtained. Then, due to the success of CNNs in image analysis, the ECG signal was converted to Two-Dimensional images to be used as input in 2-Dimensional Convolutional Neural Network, which by applying proposed architecture, the classification accuracy increased to 99%. Finally, in order to reduce complexity, some changes were made in the 2D-CNN based proposed algorithms. These changes include reducing the number of filters, reducing the number of final parameters of the network by adding a global average-pooling layer before the fully connected layer, and adding one more convolution layer to preserve the efficiency of the network. After applying these changes, the accuracy was %98.68 in SCD prediction.In addition to being simple and effective, the methods proposed in this research provide the highest accuracy and maximum prediction time.
لیست مقالات
لیست مقالات بایگانی شده
Improving Spiking Neural Network Performance Using Astrocyte Feedback for Farsi Digit Recognition
Malihe Nazari - Fariba Bahrami - Mohammad Javad Yazdanpanah
Low-Cost Clock Distribution Network in Highly Compact Integrated Circuits Against Single Event Transients
Ehsan Borhani nia - Amir Mohammad Hoseini
T-type L-2L De-Embedding Method for On-Wafer T-model Transmission Line Network
Milad Seyedi - Nasser Masoumi - Samad Sheikhaei
Design and Analysis of a New Electrically Controllable Brushless Eddy-Current Clutch
Hassan Mohammadi Pirouz - Mohammadreza Baghayipour
Integrating Model-Agnostic Meta-Learning with Advanced Language Embeddings for Few-Shot Intent Classification
Ali Rahimi - Hadi Veisi
گیت Xor/Xnor جدید با مصرف توان پایین مبتنی بر تکنولوژی اسپینترونیک
ایمان علیبیگی - محمود تابنده - سعید باقری شورکی - رامین رجایی
بهبودی بر مساله تشخیص اشیا برجسته درتصاویر مبتنی بر یادگیری عمیق
مهران طاهری - محمد صادق هل فروش - کامران کاظمی
Improving the Performance of Unified Power Quality Conditioner Using Interval Type 2 Fuzzy Control
Farzad Rastegar - Zohreh Paydar
Ultra-Compact and Fast All-Optical Half-Subtractor Photonic Crystal Logic Gate
Ehsan Veisi - Mahmood Seifouri - Saeed Olyaee
Fuzzy Fractional Order Sliding Mode Controller Design for a Wind Turbine with DFIG
Mohammad Hossein Aghaseyedabdollah - Yasin Alavian - Hadi Azmi - Alireza Yazdizadeh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4