0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Using Convolutional Neural Networks for Sudden Cardiac Death prediction
نویسندگان :
Sara Tavazo
1
Farideh Ebrahimi
2
1- دانشگاه صنعتی نوشیروانی بابل
2- دانشگاه صنعتی نوشیروانی بابل
کلمات کلیدی :
Electrocardiogram (ECG)،(Sudden Cardiac Death (SCD،(Convolutional neural networks (CNN،( Continuous Wavelet Transform (CWT
چکیده :
The purpose of this study was to predict Sudden Cardiac Death early to treat cardiac disorders effectively and reduce mortality caused by a delayed diagnosis. Traditional methods have relied on analyzing Electrocardiogram and Heart Rate Variability signals for SCD prediction; their success, however, heavily depends on the feature extraction process. Therefore, Convolutional Neural Networks seem to be a suitable alternative for automatic feature extraction. This study, for the first time, presents a method for predicting SCD 60 minutes before it occurs using one-dimensional and two-dimensional CNNs. At first, a Model based on the One-Dimensional Convolutional Neural Network was used for SCD prediction, and by the proper setting of parameters, an accuracy of %98.6 was obtained. Then, due to the success of CNNs in image analysis, the ECG signal was converted to Two-Dimensional images to be used as input in 2-Dimensional Convolutional Neural Network, which by applying proposed architecture, the classification accuracy increased to 99%. Finally, in order to reduce complexity, some changes were made in the 2D-CNN based proposed algorithms. These changes include reducing the number of filters, reducing the number of final parameters of the network by adding a global average-pooling layer before the fully connected layer, and adding one more convolution layer to preserve the efficiency of the network. After applying these changes, the accuracy was %98.68 in SCD prediction.In addition to being simple and effective, the methods proposed in this research provide the highest accuracy and maximum prediction time.
لیست مقالات
لیست مقالات بایگانی شده
Accurate state of charge estimation for lithium-ion batteries for stationary energy storage applications using low-cost measureent sensors
Omeed Rezaee - Iman Sharifi - Mohammad Bagher Menhaj
Millimeter-Wave Imaging System: A Brief Study on System Performance
Behnam Ghandi - Sobhan Dabidian - Sina Zeraatkar - Zahra Kavehvash
یادگیری متری عمیق جهت شناسایی افراد
امیرعلی نسیمی - مهران صفایانی - مائده احمدی - عبدالرضا میرزائی
Observer-Based Control for impulsive switched systems with Uncertain inputs
Soheil Sheikh ahmadi - Farzad Hashemzadeh - Mohammad Ali Badamchizadeh
Swin Wavelet Super Resolution
Zahra Moammeri - Ahmad Mahmoudi-Aznaveh
ارائه روشی جهت بهبود عملکرد شبکههای بیسیم حسگر ناهمگون مبتنی بر برداشت انرژی
محمد فرشته حکمت - علیرضا کشاورز حداد
طراحی یک کنترلکننده غیرخطی تطبیقی غیرمتمرکز برای تنظیم ولتاژ ریزشبکههای DC در حالت جزیرهای
سمیه بهرامی - فاطمه صفایی
طراحی و تحلیل یک حسگر پلاسمونیک ضریب شکست بر پایه فیبر بلور فتونی با هدف بهبود مشخصات فنی
علی یاوری - حسن کاتوزیان - سارا قلی نژاد شفق
ZnO-based Acoustofluidics: Droplet-based Particle Manipulation
Sara Abbasi - Behdad Barahimi - Sara Darbari - Mohammad Kazem Moravvej-Farshi - Mohammad Zabetian
A Novel Step-up Converter Based on Active Network and Coupled-Inductor Technique with Soft Switching Operation
Mohammadreza Zeynalhosseyni - Reza Beiranvand
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1