0% Complete
صفحه اصلی
/
سی و دومین کنفرانس بین المللی مهندسی برق
Using Convolutional Neural Networks for Sudden Cardiac Death prediction
نویسندگان :
Sara Tavazo
1
Farideh Ebrahimi
2
1- دانشگاه صنعتی نوشیروانی بابل
2- دانشگاه صنعتی نوشیروانی بابل
کلمات کلیدی :
Electrocardiogram (ECG)،(Sudden Cardiac Death (SCD،(Convolutional neural networks (CNN،( Continuous Wavelet Transform (CWT
چکیده :
The purpose of this study was to predict Sudden Cardiac Death early to treat cardiac disorders effectively and reduce mortality caused by a delayed diagnosis. Traditional methods have relied on analyzing Electrocardiogram and Heart Rate Variability signals for SCD prediction; their success, however, heavily depends on the feature extraction process. Therefore, Convolutional Neural Networks seem to be a suitable alternative for automatic feature extraction. This study, for the first time, presents a method for predicting SCD 60 minutes before it occurs using one-dimensional and two-dimensional CNNs. At first, a Model based on the One-Dimensional Convolutional Neural Network was used for SCD prediction, and by the proper setting of parameters, an accuracy of %98.6 was obtained. Then, due to the success of CNNs in image analysis, the ECG signal was converted to Two-Dimensional images to be used as input in 2-Dimensional Convolutional Neural Network, which by applying proposed architecture, the classification accuracy increased to 99%. Finally, in order to reduce complexity, some changes were made in the 2D-CNN based proposed algorithms. These changes include reducing the number of filters, reducing the number of final parameters of the network by adding a global average-pooling layer before the fully connected layer, and adding one more convolution layer to preserve the efficiency of the network. After applying these changes, the accuracy was %98.68 in SCD prediction.In addition to being simple and effective, the methods proposed in this research provide the highest accuracy and maximum prediction time.
لیست مقالات
لیست مقالات بایگانی شده
طراحی و شبیه سازی جاذب شفاف فراماده تک لایه پهن باند مبتنی بر الگوی فرکتالی با پایداری زاویه ای بالا و غیر حساس به قطبش
سحر سوقی - حمید حیدر - محمدرضا هراتی - وحید نیری
A Low Phase Noise and High Frequency DLL-Based Clock Multiplier with Enhanced Locking Range
Alireza Toloue Khorasanian - Saeed Saeedi
DRAU-Net: Double Residual Attention Mechanism for automatic MRI brain tumor segmentation
Mohammad Soltani gol - Morteza Fattahi - Hamid Soltanian zadeh - Samd Sheikhaei
Transfer Learning Based Method for Human Activity Recognition
Saeedeh Zebhi - Smt Almodarresi - Vahid Abootalebi
Classification of Schizophrenia Patients by Nonlinear Analysis of EEG
Amirhossein Tajik - Hoda Jalalkamali - Hossein Nezamabadipour
Contextual Based Locality Preserving Projection for Classification of SAR Images with Multiple Polarizations
Maryam Imani
Improved Homptopy Technique for MIMO signal Detection
Elaheh Ghaderi - Masoumeh Azghani
بهبود عملکرد یک ( LOC ) Lab – On –Chipپیشرفته مبتنی بر فناوری MEMSبه کمک تقویت میدان الکتریکی ساختار
شیوا عظیمی نام - فهیمه مروی - کیان جعفری
Analyzing Large-scale PV Plant Controllers by Technical Performance Indices using MCS Method
Hooman Nasrazadani - Alireza Sedighi - Hossein Seifi
A compact 5G MIMO antenna with reduced mutual coupling
Marziyeh Amiri - Ali Ghafoorzadeh-yazdi - Abbas-Ali Heidari
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2