0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
DRAU-Net: Double Residual Attention Mechanism for automatic MRI brain tumor segmentation
نویسندگان :
Mohammad Soltani gol
1
Morteza Fattahi
2
Hamid Soltanian zadeh
3
Samd Sheikhaei
4
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
کلمات کلیدی :
Attention mechanism، brain tumor segmentation، deep convolutional neural networks، magnetic resonance imaging، residual blocks، U-net
چکیده :
Abstract— Accurate tumor segmentation is necessity for reliable diagnosis and treatment of brain cancer. Glioma is a very common and life-threatening type of brain tumor. Various Magnetic Resonance Imaging (MRI) modalities contribute to segmentation accuracy since they provide complementary information. Deep Convolutional Neural Networks (DCNNs) have provided remarkably good performance in the field of image segmentation. However, because of difficulties in detecting gliomas due to their intensity and shape variations, development of an efficient network with an appropriate loss function is needed. DCNNs developed for segmentation include 2 main parts. The first part performs as an encoder and extracts spatial information, while the second part generates a full resolution probability map. Our proposed network is based on the U-net structure. We use double residual blocks to generate a unique mapping to activations earlier in the network and neutralize the decay problem. Besides, we utilize an attention mechanism after the low and high-level features for adaptively weighing the channels. Instead of feeding the 3D data to the network, we use 2D plains in the axial view. We tested the network successfully using the Brain Tumor Segmentation (BraTS) 2018 dataset. We used the Dice score for network evaluation and obtained scores of 0.891, 0.849, and 0.834 for WT, TC, and ET, respectively.
لیست مقالات
لیست مقالات بایگانی شده
شناسایی کمپلکس های پروتئینی با رویکرد خوشه بندی EM و با استفاده از داده های زیستی
مریم مولی وردیخانی - سعید جلیلی
طراحی و شبیه سازی مبدل کاهنده دو مرحله ای با کنترل کننده زمان روشن-خاموش تطبیقی
نوید گودرزی - حسین پاک نیت - نوید یثربی
Hybrid PI-SOSM Controller for Battery and Supercapacitor Integration in Electric Vehicles
Maede Azimi - Ghasem Rezazadeh - Mohsen Hamzeh
Improving the Accuracy of the Annotation Algorithm in Pattern-Based Tennis Game Video
Azam Bastanfard - Dariush Amirkhani
Transfer learning using deep convolutional neural network for predicting dementia severity
Vahid Asayesh - Mehdi Dehghani - Majid Torabi Nikjeh - Sepideh Akhtari khosrowshahi
Significant Methods to Improve Control of Quadrotors, Hexarotors and Octorotors
Peyman Amiri - Nima Sina - Mohammad Danesh
گیت Xor/Xnor جدید با مصرف توان پایین مبتنی بر تکنولوژی اسپینترونیک
ایمان علیبیگی - محمود تابنده - سعید باقری شورکی - رامین رجایی
Parkinson’s Disease Classification Using Continuous Wavelet Transform and Ensemble Convolutional Neural Networks on EEG Signals
Seyed Pedram Monazami - Raheleh Davoodi
Active and Passive Beamforming for Secure Wireless Communication via Star-RIS under imperfect CSI
Seyedeh Reyhane Shahcheragh - Kamal Mohamed-pour
The Effect of Cavity Length on Two-State Quantum Dot Laser Performance
Gholamreza Babaabasi - Mohammad Mohsen Sheikhey - Sara Alaei
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1