0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
DRAU-Net: Double Residual Attention Mechanism for automatic MRI brain tumor segmentation
نویسندگان :
Mohammad Soltani gol
1
Morteza Fattahi
2
Hamid Soltanian zadeh
3
Samd Sheikhaei
4
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
کلمات کلیدی :
Attention mechanism، brain tumor segmentation، deep convolutional neural networks، magnetic resonance imaging، residual blocks، U-net
چکیده :
Abstract— Accurate tumor segmentation is necessity for reliable diagnosis and treatment of brain cancer. Glioma is a very common and life-threatening type of brain tumor. Various Magnetic Resonance Imaging (MRI) modalities contribute to segmentation accuracy since they provide complementary information. Deep Convolutional Neural Networks (DCNNs) have provided remarkably good performance in the field of image segmentation. However, because of difficulties in detecting gliomas due to their intensity and shape variations, development of an efficient network with an appropriate loss function is needed. DCNNs developed for segmentation include 2 main parts. The first part performs as an encoder and extracts spatial information, while the second part generates a full resolution probability map. Our proposed network is based on the U-net structure. We use double residual blocks to generate a unique mapping to activations earlier in the network and neutralize the decay problem. Besides, we utilize an attention mechanism after the low and high-level features for adaptively weighing the channels. Instead of feeding the 3D data to the network, we use 2D plains in the axial view. We tested the network successfully using the Brain Tumor Segmentation (BraTS) 2018 dataset. We used the Dice score for network evaluation and obtained scores of 0.891, 0.849, and 0.834 for WT, TC, and ET, respectively.
لیست مقالات
لیست مقالات بایگانی شده
Coverage Probability Analysis of User Association in NOMA-Based Full-Duplex Systems
Shaghayegh Asadollahi dehkordi - Mohammadali Mohammadi - Zahra Mobini - Sepideh Haghgoy
Decoding Trait: Using Dual Transformers to Analyze Gender, Age Range and Personality
ُSaeed Asadian - Mostafa Tanasan - Bijan Vosoughi vahdat
A Compact Microstrip Combline Filter for Microwave S-band
Sina Rezaee - Mohammad Memarian
Power Transformer Vibration Study and its Application in Winding Deformation Detection
Amir Esmaeili Nezhad - Mohammad Hamed Samimi
Probabilistic Dynamic Economic Dispatch in Presence of Wind Farms
Homayoun Berahmandpour - Shahram Montasar Kuhsari - Hassan Rastegar
Design and fabrication of wearable and stretchable EEG headband using textile-based electrode wire
Kourosh Motiepor - Arman Modoudi Yaghouti - Simin Bakhtiyari - Amir Jahanshahi - Roohollah Bagherzadeh
Interval-Based Setting Approach for Distance Relays Considering Uncertainties Using Monte Carlo Simulation
Abolfazl Hadadi - Mohammad Javad Jalilian - Behrooz Vahidi - Gholam Hossein Riahy Dehkordi
Contextual Based Locality Preserving Projection for Classification of SAR Images with Multiple Polarizations
Maryam Imani
Integration of P2G and Renewables in Stochastic Day-ahead Electricity-Gas Scheduling
Mojtaba Choghaei - Mohammad Kazem Sheikh-El-Eslami
طراحی کنترل کننده امن سیستمهای غیرخطی با استفاده از یادگیری تقویتی و بهینه سازی مجموع مربعات
حسین قلی زاده - احسان رضوی - سجاد پاک خصال - سعید شمقدری
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2