0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
DRAU-Net: Double Residual Attention Mechanism for automatic MRI brain tumor segmentation
نویسندگان :
Mohammad Soltani gol
1
Morteza Fattahi
2
Hamid Soltanian zadeh
3
Samd Sheikhaei
4
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
کلمات کلیدی :
Attention mechanism، brain tumor segmentation، deep convolutional neural networks، magnetic resonance imaging، residual blocks، U-net
چکیده :
Abstract— Accurate tumor segmentation is necessity for reliable diagnosis and treatment of brain cancer. Glioma is a very common and life-threatening type of brain tumor. Various Magnetic Resonance Imaging (MRI) modalities contribute to segmentation accuracy since they provide complementary information. Deep Convolutional Neural Networks (DCNNs) have provided remarkably good performance in the field of image segmentation. However, because of difficulties in detecting gliomas due to their intensity and shape variations, development of an efficient network with an appropriate loss function is needed. DCNNs developed for segmentation include 2 main parts. The first part performs as an encoder and extracts spatial information, while the second part generates a full resolution probability map. Our proposed network is based on the U-net structure. We use double residual blocks to generate a unique mapping to activations earlier in the network and neutralize the decay problem. Besides, we utilize an attention mechanism after the low and high-level features for adaptively weighing the channels. Instead of feeding the 3D data to the network, we use 2D plains in the axial view. We tested the network successfully using the Brain Tumor Segmentation (BraTS) 2018 dataset. We used the Dice score for network evaluation and obtained scores of 0.891, 0.849, and 0.834 for WT, TC, and ET, respectively.
لیست مقالات
لیست مقالات بایگانی شده
An Accurate Subthreshold Analytical Model for Black Phosphorus Heterojunction Dopingless Tunneling Field-Effect Transistors
Saeid Marjani - Mohamad Tolue Khayami
A New Coupled Inductor based Non-Isolated Dual Input Soft-Switching High Step-up DC-DC Converter
Amirreza Razavi Majarshin - Ebrahim Babaei - Mehran Sabahi
Controllable UWB THz Absorber Using a New Single-layer Graphene-based Grating
Mahdieh Bozorgi - Mahmood Rafaei Booket - Mohammad Amin Zolghadr
Better Exploration In Single-Agent Q-Learning Using Controlled Linear Perturbation
Sadredin Hokmi - Mohammad Haeri
جابجایی ایمبرت-فدروف نور عبوری از ساختار چندلایه ای حاوی گرافن و دیاکسید وانادیوم
رباب زادجمال سیفی - رضا عبدی قلعه - کاظم جمشیدی قلعه
Extended Phase Shift Control in Dual Active Bridge Converter Considering Magnetizing Inductance of Transformer
Masood Soleimanifard - Ali Yazdian Varjani
Intrusion Detection System for Securing Agriculture 4.0 against DDoS Attacks using Deep Learning and Machine Learning Models
Mohammad Mirmarghabi - Ahmad Afshar - Hajar Atriyanfar
Image-Based Self-Localization Using Differential Observation Angle Based on Real-World Features
Seyed Mohammad Bagher Seyedin - Mahdi Goodarzi - Fereidoon Behnia
بهره برداری از ESS ها در بخش DC ترانسفوماتور حالت جامد به منظور بهبود کیفیت توان شبکه برق
یوسف عطائی - رضا قندهاری - مهدی بابائی - بهنام بهارلوئی
Dual-Branch Cross-Parallel Transformer Model for Single-Channel Speech Enhancement
Mohammad Hakimkhah - Rahil Mahdian Toroghi - Hassan Zareian
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4