0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
DRAU-Net: Double Residual Attention Mechanism for automatic MRI brain tumor segmentation
نویسندگان :
Mohammad Soltani gol
1
Morteza Fattahi
2
Hamid Soltanian zadeh
3
Samd Sheikhaei
4
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
کلمات کلیدی :
Attention mechanism، brain tumor segmentation، deep convolutional neural networks، magnetic resonance imaging، residual blocks، U-net
چکیده :
Abstract— Accurate tumor segmentation is necessity for reliable diagnosis and treatment of brain cancer. Glioma is a very common and life-threatening type of brain tumor. Various Magnetic Resonance Imaging (MRI) modalities contribute to segmentation accuracy since they provide complementary information. Deep Convolutional Neural Networks (DCNNs) have provided remarkably good performance in the field of image segmentation. However, because of difficulties in detecting gliomas due to their intensity and shape variations, development of an efficient network with an appropriate loss function is needed. DCNNs developed for segmentation include 2 main parts. The first part performs as an encoder and extracts spatial information, while the second part generates a full resolution probability map. Our proposed network is based on the U-net structure. We use double residual blocks to generate a unique mapping to activations earlier in the network and neutralize the decay problem. Besides, we utilize an attention mechanism after the low and high-level features for adaptively weighing the channels. Instead of feeding the 3D data to the network, we use 2D plains in the axial view. We tested the network successfully using the Brain Tumor Segmentation (BraTS) 2018 dataset. We used the Dice score for network evaluation and obtained scores of 0.891, 0.849, and 0.834 for WT, TC, and ET, respectively.
لیست مقالات
لیست مقالات بایگانی شده
Iranian stock market fluctuations: from social news to forecasting models
Maryam Sharifinia - Farzaneh Ghayour Baghbani
An Investigation on Transfer Learning for Classification of COVID-19 Chest X-Ray Images with Pre-trained Convolutional-based Architecture
Mobina Abdoli Nemati - ََAmirreza Baba Ahmadi
Optimizing Dual IMU Sensor Placement for Gait Phase Detection with LSTM Models
Mahya Abedi - Zolfa Anvari - Hamed Ghafarirad - Mohammad Zareinejad
Stability Improvement in Weak Grid-Tied DFIG-based WECS Employing Adaptive Virtual Impedance Strategy Based on Machine Learning Considering the LVRT Constraint
Mohammad Hossein Shaabani - Behrooz Vahidi - Navid Dehghan
حسگر غیرتهاجمی تشخیص قندخون با استفاده از تکنیک مایکروویو بر مبنای تشدید فرکانسی
نازنین افشاری - سید محمد هاشمی - فاطمه گران قراخیلی
Classification of automotive radar targets using Gray Level Co-occurrence Matrix
Amin AghatabarRoodbary - MohammadHassan Bastani - Fereidoon Behnia
A New Approch on Condition Assessment of MV Switchgear based on Thermal Evaluation
Mohsen Taghizadeh Kejani - Seyed Hamid Khalkhali - Ali asghar RaziKazemi
Design of Fresnel-Region Millimeter-Wave Metasurface Beam Shaper Using Deep Learning
Mohammad Hossein Koohi Ghamsari - Ehsan Imanbeygi - Mehdi Ahmadi-Boroujeni
Unveiling Enhanced Image Quality in Sparse-View CT with OSEM- ANLM Algorithm
Sayna Jamaati - Seyed Abolfazl Hosseini - Mohammad Ghorbanzadeh - Hossein Arabi
Event-triggered SOF Control of Descriptor Switched Systems
Hamidreza Ahmadzadeh - Masoud Shafiee - Iman Zamani
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3