0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
DRAU-Net: Double Residual Attention Mechanism for automatic MRI brain tumor segmentation
نویسندگان :
Mohammad Soltani gol
1
Morteza Fattahi
2
Hamid Soltanian zadeh
3
Samd Sheikhaei
4
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
کلمات کلیدی :
Attention mechanism، brain tumor segmentation، deep convolutional neural networks، magnetic resonance imaging، residual blocks، U-net
چکیده :
Abstract— Accurate tumor segmentation is necessity for reliable diagnosis and treatment of brain cancer. Glioma is a very common and life-threatening type of brain tumor. Various Magnetic Resonance Imaging (MRI) modalities contribute to segmentation accuracy since they provide complementary information. Deep Convolutional Neural Networks (DCNNs) have provided remarkably good performance in the field of image segmentation. However, because of difficulties in detecting gliomas due to their intensity and shape variations, development of an efficient network with an appropriate loss function is needed. DCNNs developed for segmentation include 2 main parts. The first part performs as an encoder and extracts spatial information, while the second part generates a full resolution probability map. Our proposed network is based on the U-net structure. We use double residual blocks to generate a unique mapping to activations earlier in the network and neutralize the decay problem. Besides, we utilize an attention mechanism after the low and high-level features for adaptively weighing the channels. Instead of feeding the 3D data to the network, we use 2D plains in the axial view. We tested the network successfully using the Brain Tumor Segmentation (BraTS) 2018 dataset. We used the Dice score for network evaluation and obtained scores of 0.891, 0.849, and 0.834 for WT, TC, and ET, respectively.
لیست مقالات
لیست مقالات بایگانی شده
A New 1-D Model for Singular 2-D Systems
Kamyar Azarakhsh - Masoud Shafiee
تخمین کانال V2X با استفاده از CDP وفقی
الهام نادری مقدم - محمدعلی سبقتی - حسن زارعیان
Analysis of the DC Bias Effects on the Transformer Vibration Using a Multi-field Coupling Model
Amir Esmaeili Nezhad - Mohammad Hamed Samimi
Integrating Model-Agnostic Meta-Learning with Advanced Language Embeddings for Few-Shot Intent Classification
Ali Rahimi - Hadi Veisi
A New High gain Transformerless DC-DC Converter with Low Voltage Stress on Power Switches
Amirreza Bahadori - Ali Nadermohammadi - Mohammad Maalandish - Seyed Hossein Hosseini - Mehran Sabahi
Real-Time Object Detection and Depth Estimation in Quadcopters through Intelligent Image Processing with YOLOv8
Amir Mahdavi - Mojtaba Mohsen Haghighi - Saeed Khankalantary
بررسی نامتعادلی در مبدل DC به DC تمامپل شیفت فاز با یکسوکنندهی دوبرابرکنندهی جریان
رضا نرئی - یاسر کریمی - محمدهادی زارع
Design and Implementation of a TEM Double-ridge Horn Antenna for Ultra-Wideband Applications
Seyed Navid Seyfossadat - Hassan Zakeri - Ahad Tavakoli - Gholamreza Moradi
تشخیص حرکت دست با تکنیک ORB و شبکه عصبی پیچشی
مهین مقبلی - فرحناز مهنا - پوریا جعفری
A Simulation Case Study of THz Reflection Spectroscopy
Mitra Mirsalehi - Zahra Kavehvash - Mehdi Fardmanesh
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4