0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
DRAU-Net: Double Residual Attention Mechanism for automatic MRI brain tumor segmentation
نویسندگان :
Mohammad Soltani gol
1
Morteza Fattahi
2
Hamid Soltanian zadeh
3
Samd Sheikhaei
4
1- دانشگاه تهران
2- دانشگاه تهران
3- دانشگاه تهران
4- دانشگاه تهران
کلمات کلیدی :
Attention mechanism، brain tumor segmentation، deep convolutional neural networks، magnetic resonance imaging، residual blocks، U-net
چکیده :
Abstract— Accurate tumor segmentation is necessity for reliable diagnosis and treatment of brain cancer. Glioma is a very common and life-threatening type of brain tumor. Various Magnetic Resonance Imaging (MRI) modalities contribute to segmentation accuracy since they provide complementary information. Deep Convolutional Neural Networks (DCNNs) have provided remarkably good performance in the field of image segmentation. However, because of difficulties in detecting gliomas due to their intensity and shape variations, development of an efficient network with an appropriate loss function is needed. DCNNs developed for segmentation include 2 main parts. The first part performs as an encoder and extracts spatial information, while the second part generates a full resolution probability map. Our proposed network is based on the U-net structure. We use double residual blocks to generate a unique mapping to activations earlier in the network and neutralize the decay problem. Besides, we utilize an attention mechanism after the low and high-level features for adaptively weighing the channels. Instead of feeding the 3D data to the network, we use 2D plains in the axial view. We tested the network successfully using the Brain Tumor Segmentation (BraTS) 2018 dataset. We used the Dice score for network evaluation and obtained scores of 0.891, 0.849, and 0.834 for WT, TC, and ET, respectively.
لیست مقالات
لیست مقالات بایگانی شده
A Comparison Between PI-PSO, Fuzzy-PID, and Direct Adaptive Fuzzy Controllers for Controlling a Buck-Boost DC-DC Converter with Semi-Quadratic Voltage Gain and Continuous Input Current
Nasim Moradmatak - Seyed Hamid Shahalami
Formation of Singular Multi-Agent Systems via a New Iterative Learning Control Approach
Ali Raddanipour - Masoud Shafiee
Slice-Aware Resource Calendaring in Cloud-based Radio Access Networks
Zeinab Sasan - Siavash Khorsandi
تعیین نقشه راه مناسب شرکتهای توزیع کشور در زمینه مدیریت سمت تقاضا
محمدرحیم محمدی
Study of Plasmonic Perfect Absorber Using Three Dimensional Silver Double Triangle-Shaped Nanoparticles
Mohammad Reza Rakhshani
Holographic Technique Inspired Multi-Beam Cylindrical Leaky-Wave Antenna
Mohammad Amin Chaychi Zadeh - Nader Komjani - Sajjad Zohrevand
Chaos-Based Physical Layer Security in NOMA Systems
Alireza Mard shoorijeh - Mahmoud Ahmadian Attari
Atrial Fibrillation (AF) Detection Using Deep Learning with GAN-based Data Augmentation
Amirhossein Akhoondkazemi - Arash Vashagh - Sayed Jalal Zahabi - Davood Shafie
Efficient and Fast Analysis of SIW Microwave Devices Using the Multiple Multipole Technique
Ahmad Bakhtafrouz - Mohammad Moemenian - Mohsen Maddahali - Mohsen Karimian Kakolaki
A Framework for Plant Topology Extraction Using Process Mining and Alarm Data
Amir Neshastegaran - Ali Norouzifar - ایمان ایزدی
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3