0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Explainable AI-Driven Deep Learning Framework for Short-Term Net Load Forecasting
نویسندگان :
Sina Hossein Beigi Fard
1
ََAmir Hossein Baharvand
2
Amir Hossein Poursaeed
3
Meysam Doostizadeh
4
1- دانشگاه لرستان
2- دانشگاه لرستان
3- دانشگاه لرستان
4- دانشگاه لرستان
کلمات کلیدی :
short-term net load forecasting،bayesian optimization،explainable artificial intelligence،deep learning،bidirectional long short-term memory،renewable energy resources.
چکیده :
To ensure the effective and sustainable operation of modern energy supply networks, estimating the electricity load is crucial for strategic planning, power generation, and system operation. In order to improve the precision and effectiveness of Short-Term Net Load Forecasting (STNLF), this paper presents an optimized deep neural network. Bayesian optimization of Bidirectional Long Short-Term Memory (BiLSTM) serves as the foundation for the proposed deep learning model. Bayesian optimization method is used to fine-tune the hyperparameters of the BiLSTM model. Moreover, historical time-series data with hourly resolution from 2018 and 2019 Austria are used to demonstrate the effectiveness of the proposed method. This dataset contains variables including temperature, solar energy, wind turbine generation, and actual loads. Additionally, an explainable artificial intelligence technique is used to provide better transparency and alignment with domain knowledge to explain the impact of input factors on the forecasts. The efficacy of the proposed approach is further demonstrated by validation on a different experimental dataset. Interestingly, there is a notable improvement in the evaluation of performance indices compared to the conventional machine learning-based forecasting techniques. This demonstrates the deep learning model's resilience and dependability in improving STNLF accuracy.
لیست مقالات
لیست مقالات بایگانی شده
Control Tracker Of Two Degrees Of Solar Cell Freedom Using Sliding Mode Controller
Kobra Siahi - Mohammad Reza Arvan - Vahid Behnamgol - Mahdi Mosayebi
Application of Artificial Neural Network on Diagnosing Location and Extent of Disk Space Variations in Transformer Windings Using Frequency Response Analysis
Reza Behkam - Hossein Karami - Mahdi Salay Naderi - Gevork Gharehpetian
آشکارسازی گاز فسژن با استفاده از بروفن تک لایه 12 β: شبیه سازی با استفاده از نظریه تابعی چگالی
صادق رنجبر - رزا صفایی - محمدحسین شیخی
A Hybrid Approach for Multimodal Biometric Recognition based on Feature Level Fusion in Reproducing Kernel Hilbert Space
Mohammad Hassan Safavipour - Mohammad Ali Doostari - Hamed Sadjedi
Efficient NVIS HF Hinged Half-Loop Vehicular Antenna Using Modal Analysis
Nasser Haghighat - Javad Nourinia - Changiz Ghobadi - Keyhan Hosseini - Farzad Alizadeh - Bahman Mohammadi
Adaptive Control of Switched Nonlinear Systems with Unknown Control Directions
ٍElham Ovaysi - Marzieh Kamali
Achieving a Wide Range of Voltage Gain in Three-Phase LLC Resonant Converter Using Hybrid Control of Variable Frequency and Variable Magnetizing Inductor
Saeed Ramezani darvish - Salar Sadeghian - Adib Abrishamifar
Selenium Doped Hafnium Disulfide Alloy for Visible Photodetection
Mohammadreza Razeghizadeh - Mohsen Mazaherifar - Mahdi Pourfath
بازسازی تصاویر رادار دهانه مصنوعی با استفاده از نمایش تنک مبتنی بر گروه
محبوبه خدرزاده - صادق صمدی
Dual-Input Single-Output High Step-Up DC-DC Converter for Renewable Energy Applications
Farid Mohammadi - Amir Khorsandi
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1