0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Explainable AI-Driven Deep Learning Framework for Short-Term Net Load Forecasting
نویسندگان :
Sina Hossein Beigi Fard
1
ََAmir Hossein Baharvand
2
Amir Hossein Poursaeed
3
Meysam Doostizadeh
4
1- دانشگاه لرستان
2- دانشگاه لرستان
3- دانشگاه لرستان
4- دانشگاه لرستان
کلمات کلیدی :
short-term net load forecasting،bayesian optimization،explainable artificial intelligence،deep learning،bidirectional long short-term memory،renewable energy resources.
چکیده :
To ensure the effective and sustainable operation of modern energy supply networks, estimating the electricity load is crucial for strategic planning, power generation, and system operation. In order to improve the precision and effectiveness of Short-Term Net Load Forecasting (STNLF), this paper presents an optimized deep neural network. Bayesian optimization of Bidirectional Long Short-Term Memory (BiLSTM) serves as the foundation for the proposed deep learning model. Bayesian optimization method is used to fine-tune the hyperparameters of the BiLSTM model. Moreover, historical time-series data with hourly resolution from 2018 and 2019 Austria are used to demonstrate the effectiveness of the proposed method. This dataset contains variables including temperature, solar energy, wind turbine generation, and actual loads. Additionally, an explainable artificial intelligence technique is used to provide better transparency and alignment with domain knowledge to explain the impact of input factors on the forecasts. The efficacy of the proposed approach is further demonstrated by validation on a different experimental dataset. Interestingly, there is a notable improvement in the evaluation of performance indices compared to the conventional machine learning-based forecasting techniques. This demonstrates the deep learning model's resilience and dependability in improving STNLF accuracy.
لیست مقالات
لیست مقالات بایگانی شده
Evaluating the Impact of Operation Scheduling Methods on Microgrid Reliability Using Monte Carlo Simulation
Mahsa Omri - Mohammad Jooshaki - Ali Abbaspour - Mahmud Fotuhi-Firuzabad
Smartly, reduce the latency of high-priority vehicles using IoT technology
Mahdi Talebi - Masoud Sabaei
Generation of orbital angular momentum modes via SSPP leaky-wave antenna based on holography technique
Sajjad Zohrevand - Nader Komjani
A Boost and Luo Based Non-isolated DC-DC Converter Suitable for DC Link of High Voltage Applications
Ali Meftahpour - Hesam Ehsan - Hossein Gholizadeh - Mohammad Hamed Samimi
Fragmentation-aware Coordinated Virtual Optical Network Embedding Algorithm Over Elastic Optical Networks
Niusha Sabri Kadijani - Lotfollah Beygi
IRS-aided NOMA in a Cell Free Massive MIMO System
Anahid Rafieifar - Hosein Ahmadinejad - Abolfazl Falahati
A Novel PM-Assisted Linear Switched Reluctance Motor
Matin Vatani - Mojtaba Mirsalim - Javad Shokrollahi Moghani
Si/SiO2/Ag optical sensor
Alireza Karimpour - Mehrdad Naemi Dehkharghani - Faramarz Hossein-babaei
Non-contact Radar Technology and Machine Learning for Automated Sleep Apnea-Hypopnea Syndrome Detection
ُSaman Faridsoltani - Mohaddeseh Sadeghi - Zahra Rahmani - Somayyeh Chamaani
A Low-cost Waveguide Switch Using Glide-symmetric Holey Electromagnetic Band Gap Technology
Mohsen Shafeghati - Elham Sharifi moghaddam - Behzad Ahmadi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 41.7.4