0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Explainable AI-Driven Deep Learning Framework for Short-Term Net Load Forecasting
نویسندگان :
Sina Hossein Beigi Fard
1
ََAmir Hossein Baharvand
2
Amir Hossein Poursaeed
3
Meysam Doostizadeh
4
1- دانشگاه لرستان
2- دانشگاه لرستان
3- دانشگاه لرستان
4- دانشگاه لرستان
کلمات کلیدی :
short-term net load forecasting،bayesian optimization،explainable artificial intelligence،deep learning،bidirectional long short-term memory،renewable energy resources.
چکیده :
To ensure the effective and sustainable operation of modern energy supply networks, estimating the electricity load is crucial for strategic planning, power generation, and system operation. In order to improve the precision and effectiveness of Short-Term Net Load Forecasting (STNLF), this paper presents an optimized deep neural network. Bayesian optimization of Bidirectional Long Short-Term Memory (BiLSTM) serves as the foundation for the proposed deep learning model. Bayesian optimization method is used to fine-tune the hyperparameters of the BiLSTM model. Moreover, historical time-series data with hourly resolution from 2018 and 2019 Austria are used to demonstrate the effectiveness of the proposed method. This dataset contains variables including temperature, solar energy, wind turbine generation, and actual loads. Additionally, an explainable artificial intelligence technique is used to provide better transparency and alignment with domain knowledge to explain the impact of input factors on the forecasts. The efficacy of the proposed approach is further demonstrated by validation on a different experimental dataset. Interestingly, there is a notable improvement in the evaluation of performance indices compared to the conventional machine learning-based forecasting techniques. This demonstrates the deep learning model's resilience and dependability in improving STNLF accuracy.
لیست مقالات
لیست مقالات بایگانی شده
The Conduction Mechanism in Micron-Thick ZnO Layers Grown on Si Substrates by Spray Pyrolysis
Mohsen Gharesi - Alireza Karimpour - Reza Razmand - Faramarz Hossein-Babaei
Single-Frequency Microwave Measuring System for Liquid Characterization for Point-of-Care Testing
Saeed Javadizadeh - Mohammadjavad Bouloorchi Tabalvandani - Majid Badieirostami - Mahmoud Shahabadi
A 400 ps Input Time Range 2× Time Amplifier Using Time-to-Current Compensation Technique
Mohammad Amin Yaldagard - Hossein Shamsi
بهبود تابآوری شبکههای توزیع سنتی در مرحله پیش از حادثه به کمک بازآرایی با الگوریتم ارگانیسم همزیستی
حسین بایسته - رضا شیردره - محمد احمدوند
طراحی و پیاده سازی ژنراتور تولید کننده پالس PFN-Marx فشرده و ماژولار برای تولید پالس 25 کیلوولتی
محمد حسین رنجبر - محمدجواد گل علی پور
Wideband Multi-hole Coupler Using Ridge Gap Waveguide Technology
Ahmad Bakhtafrouz - Zahra Akhoondmahdi - Mohammad Matin Mashayekhi
Design and fabrication of wearable and stretchable EEG headband using textile-based electrode wire
Kourosh Motiepor - Arman Modoudi Yaghouti - Simin Bakhtiyari - Amir Jahanshahi - Roohollah Bagherzadeh
Application of Transfer Learning in Optimized Filter- Bank Regularized CSP to Classification of EEG Signals with Small Dataset
M. Moein Esfahani - Hossein Sadati
Texture description and Face Recognition using Weighted Local Patch Distance Vectors
Ziba Javanmardi - Farzam Mohebbi - Seyed Saeed Hayati
Deep Learning Meets Explainable AI: A Robust Framework for X-Ray Fracture Detection
Ali Tamizifar - Shakiba Berenjkoub - Mina Amiri
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2