0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Explainable AI-Driven Deep Learning Framework for Short-Term Net Load Forecasting
نویسندگان :
Sina Hossein Beigi Fard
1
ََAmir Hossein Baharvand
2
Amir Hossein Poursaeed
3
Meysam Doostizadeh
4
1- دانشگاه لرستان
2- دانشگاه لرستان
3- دانشگاه لرستان
4- دانشگاه لرستان
کلمات کلیدی :
short-term net load forecasting،bayesian optimization،explainable artificial intelligence،deep learning،bidirectional long short-term memory،renewable energy resources.
چکیده :
To ensure the effective and sustainable operation of modern energy supply networks, estimating the electricity load is crucial for strategic planning, power generation, and system operation. In order to improve the precision and effectiveness of Short-Term Net Load Forecasting (STNLF), this paper presents an optimized deep neural network. Bayesian optimization of Bidirectional Long Short-Term Memory (BiLSTM) serves as the foundation for the proposed deep learning model. Bayesian optimization method is used to fine-tune the hyperparameters of the BiLSTM model. Moreover, historical time-series data with hourly resolution from 2018 and 2019 Austria are used to demonstrate the effectiveness of the proposed method. This dataset contains variables including temperature, solar energy, wind turbine generation, and actual loads. Additionally, an explainable artificial intelligence technique is used to provide better transparency and alignment with domain knowledge to explain the impact of input factors on the forecasts. The efficacy of the proposed approach is further demonstrated by validation on a different experimental dataset. Interestingly, there is a notable improvement in the evaluation of performance indices compared to the conventional machine learning-based forecasting techniques. This demonstrates the deep learning model's resilience and dependability in improving STNLF accuracy.
لیست مقالات
لیست مقالات بایگانی شده
Contrastive Learning Framework for fMRI Time-Series Classification in Left and Right Epilepsy Using Continues Wavelet Transform
Marzieh Soheili-nejad - Saeed Masoudnia - Hamid Soltanian-zadeh
بررسی تاثیر کنترل کنندههای سیستم انتقال جریان مستقیم مبتنی بر مبدلهای منبع ولتاژ با اجزای شبکه قدرت با استفاده از روش تحلیل مدال خطی
علی ضیائی - رضا قاضی - روح الامین زینلی داورانی
Improving the Performance of Unified Power Quality Conditioner Using Interval Type 2 Fuzzy Control
Farzad Rastegar - Zohreh Paydar
Entanglement Witness Derived By Using Kolmogorov-Arnold Networks
Fatemeh Lajevardi - Azam Mani - Ali Fahim
Optimal Operation of Lithium-Ion Batteries Considering Degradation Cost in Vehicle-to-Grid Systems
Mahdi Esfandiari - Amin Rafrafi - Abolfazl Pirayesh
Design and Analysis of A Non-Isolated High gain DC-DC Converter with Single Power Switch
Amirreza Bahadori - Seyed Hossein Hosseini - Ebrahim Babaei - Saeed Danyali
LSTM and Markov-Based Mobility Prediction for Multi-access Edge Computing
Hadi Ghavaminejad - Nasser Yazdani - Golboo Rashidi
Nonlinear Observer Design via Emulation Method for Sampled-data Teleoperation Systems
Ali Firouzi Abriz - Amir Aminzadeh Ghavifekr - Ashkan Safari
Exploring Graph Biomarkers and Connectivity in Epilepsy Through Graph Learning
Ali Khosravipour - Sepideh Hajipour Sardouie
A novel protection scheme for HVDC transmission lines based on DC-filter current and DC line current
Mohammad Amin Rezaei Gazik - Hossein Kazemi Karegar
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2