0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Unsupervised Change Detection in SAR Images Using a Six-Branch CNN and Adaptive Window Approach
نویسندگان :
Abbas Kakoolvand
1
Maryam Imani
2
Hassan Ghassemian
3
1- دانشگاه تربیت مدرس
2- دانشگاه تربیت مدرس
3- دانشگاه تربیت مدرس
کلمات کلیدی :
Neural Network،Change Detection (CD)،Remote Sensing،Synthetic Aperture Radar (SAR)،Convolutional Neural Network (CNN)
چکیده :
Change detection is one of the important and hot topics in remote sensing. Adaptive windowing approaches can preserve image details while reduce noise in the process of change detection. In the proposed method, two difference images (DIs) are obtained by using the adaptive window approach. Some fake labels are provided from these DIs. Neural networks have a good performance in image processing. To use this advantage, a six-branch convolutional neural network (CNN) is trained using the fake labels. Using these six branches with utilizing the adaptive windows, the network can preserve image detail while reduce noise. The proposed method based on three criteria (PCC, Kappa, and F1 score) has the best results in two datasets and has results close to the best method in other datasets.
لیست مقالات
لیست مقالات بایگانی شده
A Time-Based Analogue-to-Digital Converter for ECG Applications
Atiyeh Karimlou - Mohammad Yavari
A Digital Method for Offset Cancellation of Fully Dynamic Latched Comparators
Alireza Ahrar - Mohammad Yavari
On the Interaction Between Meteorological Conditions and Performance Optimization in MISO Free-Space Optical Communication
Meysam Ghanbari - Mahdis Saghaee Jahed - Seyed Mohammad Sajad Sadough
بررسی اثر پیرشدگی بر میدان الکتریکی و جریان نشتی در مقرههای پلیمری آلوده با شبیهسازی به روش اجزای محدود
محمد گودرزی - سید محمد شهرتاش - احمد غلامی
T-type L-2L De-Embedding Method for On-Wafer T-model Transmission Line Network
Milad Seyedi - Nasser Masoumi - Samad Sheikhaei
گیت Xor/Xnor جدید با مصرف توان پایین مبتنی بر تکنولوژی اسپینترونیک
ایمان علیبیگی - محمود تابنده - سعید باقری شورکی - رامین رجایی
Extension Network of Radiomics-based Deeply Supervised U-Net (ERDU) For Prostate Image Segmentation
Mahdi Ashtarian - Karim Faez - Marjan Firouznia - Hamidreza Amindavar
A New Approach to Determine Maximum Allowable Penetration level of LSPVPPs Considering Transient Angle Stability
Siavash Yari - Hamid Khoshkhoo
FGM Copula based Analysis of Outage Probability for Wireless Three-User Multiple Access Channel with Correlated Channel Coefficients
Mona Sadat Mohsenzadeh - Ghosheh Abed Hodtani
Application of Statistical Techniques and Machine Learning in Forecasting Distribution Network Load: A Real Case Study on the Iranian Power System
Hossein Jafari - Mohammad Sadegh Sepasian - Fatemeh Teimori
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4