0% Complete
صفحه اصلی
/
بیست و نهمین کنفرانس مهندسی برق ایران
Transfer Learning Based Method for Human Activity Recognition
نویسندگان :
Saeedeh Zebhi
1
Smt Almodarresi
2
Vahid Abootalebi
3
1- Yazd university
2- Yazd university
3- Yazd university
کلمات کلیدی :
gait history image, gradient, human activity recognition, transfer learning
چکیده :
A gait history image (GHI) is a spatial template that accumulates regions of motion into a single image in which moving pixels are brighter than others. A new descriptor named Time-sliced averaged gradient boundary magnitude (TAGBM) is also designed to show the time variations of motion. In the proposed method, each video is split into N and M groups of consecutive frames, and the GHI and TAGBM are computed for each group, resulting spatial and temporal templates. Transfer learning with the fine-tuning technique has been used for classifying these templates. This proposed method achieves the recognition accuracies of 96.5% and 92.7% for KTH and UCF Sport action datasets, respectively. Also it is compared with state-of-the-art approaches and the results demonstrate that the proposed method has the best efficiency.
لیست مقالات
لیست مقالات بایگانی شده
Secrecy Sum Rate Analysis and Power Allocation with OSTBC and Artificial Noise for MIMO Systems
Abdolrasoul Sakhaei Gharagezlou - Mahdi Nangir - Nima Imani - Amir Poorfaraj Liqvan
توسعه نرمافزار تخمین عملکرد خطوط انتقال در برابر پدیده صاعقه
سعید شیرمحمدی - رضا شریعتی نسب - کاظم علیشاهی - سامان قهقه زاده
Robust Consensus for Descriptor Multi-agent Systems with Uncertainties in all Matrices
Abolfazl Saadati Moghadam - Ehsan Ranjbar - Amir Abolfazl Suratgar - Hajar Atrianfar
بخشبندی خودکار تصاویر تشدید مغناطیسی ستون فقرات کمری با شبکه سِگیونِت
محمد انصاری فرد - رضا آقایی زاده ظروفی
A Novel Generation Shedding Procedure for Power Management System in Industrial Power Plants
Erfan Asadi - Hamid Khoshkhoo - Ali Parizad
Synergizing ISAC and OTFS in a Non-GB-OMA Downlink Framework
Ghasem Saeidi - Hamid Saeedi-sourck
SGG-Net: Skeleton and Graph-Based Neural Network Approaches for Grasping Objects
AliReza Beigy - Farbod Azimmohseni - Ali Sabzejou - Mehdi Tale Masouleh - Ahmad Kalhor
بررسی عملکرد الگوریتم یادگیری تقلیدی در آموزش شبکه عصبی کاملا متصل برای حل مسئله مسیریابی در محیطهای چندعامله
محمد روغنی - سمانه حسینی سمنانی
Deep Learning-Based Imitation of Human Actions for Autonomous Pick-and-Place Tasks
Anoosheh Saadati - Mehdi Tale Masouleh - Ahmad Kalhor
Single-Item Fashion Recommender: Towards Cross-Domain Recommendations
Seyed Omid Mohammadi - Hossein Bodaghi - Ahmad Kalhor
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2