0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Brain Tumor Segmentation Using U-net and U-net++ Networks
نویسندگان :
Seyyed Ali Mortazavi-Zadeh
1
Alireza Amini
2
Hamid Soltanian-Zadeh
3
1- دانشگاه تهران
2- دانشگاه صنعتی شریف
3- دانشگاه تهران
کلمات کلیدی :
Brain Tumor, Gliomas, Deep Learning, U-Net, U-net++, MRI, Convolutional Neural Network (CNN)
چکیده :
Abstract—Segmentation of brain tumors helps with the diagnosis and treatment tasks. Due to the large number of patients and the high cost of manual segmentation, researchers proposed automatic segmentation methods. The most popular of these are methods based on deep learning and neural networks. In this paper, we implemented an automatic segmentation using U-net++, which is based on deep convolutional neural networks, on two publicly available data sets. Using the U-Net++ architecture, the whole tumor (WT), is segmented with an accuracy of 90.37% based on the Dice similarity coefficient (DSC) for the Brats2018 dataset and 89.13% for the Brats2015 dataset. For comparison with the prior works, we implemented an alternative approach using U-Net architecture, which segmented WT with an accuracy of 89.21% for the Brats2018 dataset and 89.12% for the Brats2015 dataset. As the results suggest, leveraging U-Net++ for tumor segmentation provides improvement in WT segmentation at a cost of modest increase in runtime.
لیست مقالات
لیست مقالات بایگانی شده
Selecting the Economical Energy Storage System for Photovoltaic Power Plants
Zahra Moradi-Shahrbabak
Classifying Human Spatial Navigation Anxiety Using Electrooculography Signals and Machine Learning Techniques
Saeed Mousavi - Sara Ashrafi - Mehdi Delrobaei
Wideband and Multi-band Frequency Selective Surfaces for Microwave Shielding
Mahmoodreza Marzban - Abbas Alighanbari
Wide-band Cloaking of Finite Length PEC Cylindrical Objects under Oblique Incidence using Multi-Layer Mantle Cloak
Alireza Moosaei - Mohammad Hasan Neshati
بهبود بازه پویای حسگر گاز اکسید فلزی برای کاربرد در پایش ایمنی محیطهای صنعتی
سمانه محمدباغبان - وحید غفاری نیا
Event-triggered SOF Control of Descriptor Switched Systems
Hamidreza Ahmadzadeh - Masoud Shafiee - Iman Zamani
Smartly, reduce the latency of high-priority vehicles using IoT technology
Mahdi Talebi - Masoud Sabaei
Fault tolerant control design for linear systems based on cubic observers
Mahsa Hasanshahi - Malihe Maghfoori Farsangi - Elham Amini Boroujeni
Intrusion Detection System for Securing Agriculture 4.0 against DDoS Attacks using Deep Learning and Machine Learning Models
Mohammad Mirmarghabi - Ahmad Afshar - Hajar Atriyanfar
تولید پایگاه داده مصنوعی برای مقره های الکتریکی از روی دادههای تصویری با استفاده از شبکههای مولد تخاصمی
امیرحسین جراره - ابولفضل منافی - سعید شمقدری
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0