0% Complete
صفحه اصلی
/
سی امین کنفرانس بین المللی مهندسی برق
Brain Tumor Segmentation Using U-net and U-net++ Networks
نویسندگان :
Seyyed Ali Mortazavi-Zadeh
1
Alireza Amini
2
Hamid Soltanian-Zadeh
3
1- دانشگاه تهران
2- دانشگاه صنعتی شریف
3- دانشگاه تهران
کلمات کلیدی :
Brain Tumor, Gliomas, Deep Learning, U-Net, U-net++, MRI, Convolutional Neural Network (CNN)
چکیده :
Abstract—Segmentation of brain tumors helps with the diagnosis and treatment tasks. Due to the large number of patients and the high cost of manual segmentation, researchers proposed automatic segmentation methods. The most popular of these are methods based on deep learning and neural networks. In this paper, we implemented an automatic segmentation using U-net++, which is based on deep convolutional neural networks, on two publicly available data sets. Using the U-Net++ architecture, the whole tumor (WT), is segmented with an accuracy of 90.37% based on the Dice similarity coefficient (DSC) for the Brats2018 dataset and 89.13% for the Brats2015 dataset. For comparison with the prior works, we implemented an alternative approach using U-Net architecture, which segmented WT with an accuracy of 89.21% for the Brats2018 dataset and 89.12% for the Brats2015 dataset. As the results suggest, leveraging U-Net++ for tumor segmentation provides improvement in WT segmentation at a cost of modest increase in runtime.
لیست مقالات
لیست مقالات بایگانی شده
A Thin-Film SIS Solar Cell Based on Distributed Silicon Nanoparticles
Mohammad Ali Shameli - Sayyed Reza Mirnaziry - Leila Yousefi
LSTM and Markov-Based Mobility Prediction for Multi-access Edge Computing
Hadi Ghavaminejad - Nasser Yazdani - Golboo Rashidi
Improving the Performance of Unified Power Quality Conditioner Using Interval Type 2 Fuzzy Control
Farzad Rastegar - Zohreh Paydar
Joint Fairness, Fragmentation, and Physical Layer Impairments Aware Routing, Spectrum and Modulation Level Allocation in Elastic Optical Networks
Hassan Khanahmadzadeh - Arash Rezaee - Lotfollah Beygi
روشی برای انتخاب کُدهای بهینه افزایشی چرخشی برای افزایش تحمل پذیری خطا در شبکه های درون ساختمانیِ شهرهای هوشمند با ملاحظه سربارهای زمانی و توان مصرفی
آرش ابراهیم پور زندی - مهرشاد خسرویانی
An LMI-based Robust Fuzzy Controller for Blood Glucose Regulation in Type 1 Diabetes
Mohammadreza Ganji Arjenaki - Mahdi Pourgholi
بررسی تاثیر دینامیکی سیستمهای انرژی خورشیدی متصل به شبکه بر بارگذاری ترانسفورماتور و بهبود عملکرد شبکه فشار ضعیف توزیع نیروی برق
مهدی محمدی - رضا خدادی - علی معصومی
Type-2 fuzzy expert system for management of smart home with combining renewable resources
Ali Beheshtikhoo - Mahdi Pourgholi - Iman Khazaee
Switched-Inductor Cuk and SEPIC Power Factor Correction Rectifiers
Maryam Pourmahdi-torghabe - Hamed Heydari-doostabad - Reza Ghazi
Output feedback tube-based MPC for an LPV system using inexact scheduling variables
Nima Naeiji - Ali Akbar Afzalian - Arash Sadeghzadeh
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1