0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Classifying Human Spatial Navigation Anxiety Using Electrooculography Signals and Machine Learning Techniques
نویسندگان :
Saeed Mousavi
1
Sara Ashrafi
2
Mehdi Delrobaei
3
1- Department of Electrical Engineering, K.N.Toosi University of Technology
2- Department of Mechanical Engineering, K.N.Toosi University of Technology
3- Department of Electrical Engineering, K.N.Toosi University of Technology
کلمات کلیدی :
Electrooculography،Spatial Anxiety،Spatial Navigation،Machine Learning
چکیده :
Spatial navigation, a vital cognitive function enabling orientation, route planning, and landmark recall, is negatively impacted by anxiety. In the present study, electrooculography (EOG) signals were employed to classify levels of spatial navigation anxiety. EOG data were recorded non-invasively and in real time from 27 participants during a controlled navigation task. Features related to blinks, saccades, and fixations were extracted and subsequently provided as inputs to k-nearest neighbors, support vector machine, and decision tree classifiers. These models were applied to categorize anxiety into two and three classes, achieving accuracies of up to 85.71\% and 74.43\%, respectively. Significant features, including fixation mean duration and concatenated saccade mean velocity, were identified as key indicators of anxiety. A negative correlation between spatial navigation anxiety scores and navigation performance was observed, confirming that higher anxiety levels diminish navigational abilities. The presented findings indicate that objective, real-time assessment of spatial navigation anxiety can be realized through EOG-based analysis combined with machine learning techniques, thereby facilitating improved monitoring and support in critical navigational environments.
لیست مقالات
لیست مقالات بایگانی شده
بهبود بازدهی انرژی در سیستم های بدون سلول با آنتن های انبوه مبتنی بر مخابرات پهپادها به کمک انتقال همزمان توان و اطلاعات به صورت بی سیم
امیرحسین زحمتی - محسن اسلامی
Microgrid Damping Improvement Using High-Pass Filter-Based Virtual Synchronous Generator
Shayan Zaimi - Ashkan Moradi Naserkhani - Sharara Rehimi - Amin Karimi - Rahmatollah Mirzaei - Hassan Bevrani
Location of Distributed Generation in the Distribution Network concerning of Capacity Credit with the TLBO Optimization Algorithm
Mohammadali Arash - Mohammad Khakroei
Enhancing Fetal Brain MRI Segmentation with Adaptive Attention Mechanisms and Residual Blocks
Nazanin Valaee - Vajiheh Sabeti
A novel CMRR Enhancement technique in fully-differential Class-AB OTAs
Amirhossein Sabour - Mahsa Ramezan Pour - Mohammad Yavari
Investigation of Cross-coupling Effects on Grid-connected Inverters with LCL Filter Based on RGA Analysis
Ali Rezaei - Mohsen Hamzeh - Nima Mahdian Dehkordi
کنترل بازوی ربات دو درجه آزادی با کنترلکننده مود لغزشی مرتبه کسری فازی-تطبیقی پایانهای
مائده نفیسی فر - متین جزءاسلامی - ابوالفضل جلیلوند - سمیرا نریمان پور - فرهاد بیات
Design of a High-Efficiency Balanced Power Amplifier with 68% Fractional Bandwidth
Fatemeh Mohabati - Marzieh Chegini - Mahmoud Kamarei
Impact of Loss of Generation (LoG) on Directional Overcurrent Protection in Microgrids
Amir Nedaei - Aref Eskandari
Image denoising using convolutional neural network
Behnam Latifi - Abolghasem Raie
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2