0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Classifying Human Spatial Navigation Anxiety Using Electrooculography Signals and Machine Learning Techniques
نویسندگان :
Saeed Mousavi
1
Sara Ashrafi
2
Mehdi Delrobaei
3
1- Department of Electrical Engineering, K.N.Toosi University of Technology
2- Department of Mechanical Engineering, K.N.Toosi University of Technology
3- Department of Electrical Engineering, K.N.Toosi University of Technology
کلمات کلیدی :
Electrooculography،Spatial Anxiety،Spatial Navigation،Machine Learning
چکیده :
Spatial navigation, a vital cognitive function enabling orientation, route planning, and landmark recall, is negatively impacted by anxiety. In the present study, electrooculography (EOG) signals were employed to classify levels of spatial navigation anxiety. EOG data were recorded non-invasively and in real time from 27 participants during a controlled navigation task. Features related to blinks, saccades, and fixations were extracted and subsequently provided as inputs to k-nearest neighbors, support vector machine, and decision tree classifiers. These models were applied to categorize anxiety into two and three classes, achieving accuracies of up to 85.71\% and 74.43\%, respectively. Significant features, including fixation mean duration and concatenated saccade mean velocity, were identified as key indicators of anxiety. A negative correlation between spatial navigation anxiety scores and navigation performance was observed, confirming that higher anxiety levels diminish navigational abilities. The presented findings indicate that objective, real-time assessment of spatial navigation anxiety can be realized through EOG-based analysis combined with machine learning techniques, thereby facilitating improved monitoring and support in critical navigational environments.
لیست مقالات
لیست مقالات بایگانی شده
طراحی و شبیه سازی شتاب سنج خازنی MEMS برای استفاده در سمعک های تمام کاشت
میلاد کریمی پور - مهدیه مهران
A Transformer less Quadratic Boost DC-DC Converter with Continuous Input Current and a Few Number of Components, Based on Classical Boost and Cuk Converter Suitable for Renewable Applications
Saeed Mahdizadeh - Reza Sharifi Shahrivar - Hossein Gholizadeh - Ebrahim Afjei
بهبود عملکرد یک ( LOC ) Lab – On –Chipپیشرفته مبتنی بر فناوری MEMSبه کمک تقویت میدان الکتریکی ساختار
شیوا عظیمی نام - فهیمه مروی - کیان جعفری
Design and simulation of an interleaved soft-switched CW-VM based boost converter for high power and high voltage applications
Soheil Hasani - Reza Beiranvand
تخمین کانال های پهپاد به پهپاد با استفاده از فیلتر کالمن توسعه یافته
فهیمه رنجبر - محمدعلی سبقتی
کنترل حرارت مبتنی بر روش LQG در پیل سوختی غشاء پلیمری
احمدرضا ولی - محمدعلی علیرضاپوری - محمدمهدی برزگری
Stable Target Tracking in Wireless Sensor Networks Under Malicious Cyber Attacks
Jafar Akhondali - Mohammad Taheri
Machine Learning Approach for Retrieval of Complex Permittivity in Cavity Resonators
Kianoosh Kazemi - Gholamreza Moradi
طراحی و ساخت یک سیستم مخابرات نور مرئی مبتنی بر دوربین
شادی خسروی - فروغ السادات طباطباء - شهاب الدین رحمانیان
Design of an Optical Current Transformer for High-Voltage Gas-Insulated Switchgear-Part I: Focus on Optical Sensor Design
Reza Babaei - Asghar Akbari - Arash Moradi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4