0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Integration of Deep Learning Techniques in Stock Market Forecasting: xLSTM-CNN with RevIN and Adaptive Wavelet Denoising
نویسندگان :
Alireza Mohammadi
1
Ali Doustmohammadi
2
Masoud Shafiee
3
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
Time Series،Prediction،Stock Market،xLSTM،CNN،Wavelet Denoising،S&P 500
چکیده :
Stock market prediction is a challenging task due to the nonlinear nature of financial time series data. Recent advances in machine learning and deep learning have offered new solutions to address some of these challenges. This research presents a novel integrated deep learning approach, combining the Extended Long Short-Term Memory (xLSTM) network with a Convolutional Neural Network (CNN) for stock market forecasting. To address the challenge of distribution shift in price signals, the Reversible Instance Normalization (RevIN) method is utilized for efficient input normalization. Additionally, wavelet denoising, combined with an adaptive thresholding technique, is used to mitigate the impact of noise in financial time series. The model is evaluated on the S\&P 500 index, and comparative experiments against advanced forecasting models, such as Extended Long Short-Term Memory for Time Series (xLSTM-TS), Temporal Convolutional Networks (TCN), and transformer-based time series model, demonstrate the superiority of our approach in accurately predicting stock prices and directional movements.
لیست مقالات
لیست مقالات بایگانی شده
Melanoma Detection Using Multi-Color LBP-FPl and Optimized VGG16
Vida Esmaeili - Mahmood Mohassel Feghhi
Bit Error Rate Analysis for a Mixed Underwater OWC-FSO Relaying System in the Presence of Pointing Error
Mahdis Saghaee Jahed - Meysam Ghanbari - Seyed Mohammad Sajad Sadough
IRS-aided NOMA in a Cell Free Massive MIMO System
Anahid Rafieifar - Hosein Ahmadinejad - Abolfazl Falahati
Sliding-mode H∞ Control of Continuous Singular Systems under Zeno-free Event-triggered Sampling Scheme
Hamidreza Ahmadzadeh - Masoud Shafiee
Low power SRAM using an optimal number of split bit lines and single-ended sensing
Mahdie Nazemian - Sayed Masoud Sayedi
Fixed-Time Nonlinear Observer for a Class of Applicable Nonlinear Systems
علی ابویی - Mohammad Hadi Rezaei
On spatiotemporal-aware deep neural networks for real-time video fire detection: empowering image-based models with temporal and spatial features of video
Mahdi Shamisavi - Sahar Eslami - Amir Jahanshahi - Morteza Rajabzadeh
MODELING AGE-RELATED CHANGES IN VISUAL EVOKED RESPONSES USING CORRELATION METRICS AND INTER-ELECTRODE CONNECTIVITY
Seyyed Saleh Fazaeli Hashemi - Farveh Daneshvarfard - Nasrin Maarefi
Two Mixed Logical Dynamical Real-Time Receding Horizon Control Schemes for Microgrids Operation Optimization
Seyed Shahab Kheradmand - Reyhaneh Haghpanah - Malihe Maghfouri Farsangi - Mojtaba Barkhordary
MoS2 Grating on a Grounded Periodic SiO2 as a Wideband THz Absorber
Mohammad Amin Zolghadr - Mahmood Rafaei Booket
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0