0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Integration of Deep Learning Techniques in Stock Market Forecasting: xLSTM-CNN with RevIN and Adaptive Wavelet Denoising
نویسندگان :
Alireza Mohammadi
1
Ali Doustmohammadi
2
Masoud Shafiee
3
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
Time Series،Prediction،Stock Market،xLSTM،CNN،Wavelet Denoising،S&P 500
چکیده :
Stock market prediction is a challenging task due to the nonlinear nature of financial time series data. Recent advances in machine learning and deep learning have offered new solutions to address some of these challenges. This research presents a novel integrated deep learning approach, combining the Extended Long Short-Term Memory (xLSTM) network with a Convolutional Neural Network (CNN) for stock market forecasting. To address the challenge of distribution shift in price signals, the Reversible Instance Normalization (RevIN) method is utilized for efficient input normalization. Additionally, wavelet denoising, combined with an adaptive thresholding technique, is used to mitigate the impact of noise in financial time series. The model is evaluated on the S\&P 500 index, and comparative experiments against advanced forecasting models, such as Extended Long Short-Term Memory for Time Series (xLSTM-TS), Temporal Convolutional Networks (TCN), and transformer-based time series model, demonstrate the superiority of our approach in accurately predicting stock prices and directional movements.
لیست مقالات
لیست مقالات بایگانی شده
Transmission and Energy Storage Co-Planning Expansion Considering Short-Term Uncertainties under Renewable Penetration
Mojtaba Moradi-Sepahvand - Turaj Amraee
Transmission Dynamics and Optimal Control Strategy to Mitigate the Spread of Novel Coronavirus: The Case of Iran
Reza Shadi - Ahmad Fakharian - Hamid Khaloozadeh
تولید پایگاه داده مصنوعی برای مقره های الکتریکی از روی دادههای تصویری با استفاده از شبکههای مولد تخاصمی
امیرحسین جراره - ابولفضل منافی - سعید شمقدری
Analytical Model for Estimating the Range of Troposcatter Active Radar
Mahdi Shiri - Mohammadreza Edalatzadeh
U-Net-based Automotive Radar Target Detection and Recognition
Jamal Kazazi - Seyyed Mohammad Matin AleMohammad - Mahmoud Kamarei
On the Design of Highly Efficient Harmonic Tuned Wideband Class F-1/F Power Amplifier
Mohammad Reza Zeinali - Amir Hossein Aalipour - Hossein Shamsi
Design and Modeling of Graphene Based Electro-absorption Modulator Integrated with Hybrid Plasmonic Waveguides
Hadi Soofi - Shima Karkon Bagheri - Hamid Vahed
Extension Network of Radiomics-based Deeply Supervised U-Net (ERDU) For Prostate Image Segmentation
Mahdi Ashtarian - Karim Faez - Marjan Firouznia - Hamidreza Amindavar
Optimal Scheduling of Active Distribution Networks with High Penetration of Plug-in Electric vehicles and Renewables Using Grasshopper Optimization Algorithm
Seyyed Hadi Mousavi - Varahram Janatifar - Arya Abdolahi - Mitra Sarhangzadeh
Reinforcement Learning based Joint Resource Allocation and User Fairness Optimization in mmWave-NOMA HetNets
Sima Sobhi-Givi - Mahdi Nouri - Mahrokh G. Shayesteh - Hashem Kalbkhani - Zhiguo Ding
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3