0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Integration of Deep Learning Techniques in Stock Market Forecasting: xLSTM-CNN with RevIN and Adaptive Wavelet Denoising
نویسندگان :
Alireza Mohammadi
1
Ali Doustmohammadi
2
Masoud Shafiee
3
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
Time Series،Prediction،Stock Market،xLSTM،CNN،Wavelet Denoising،S&P 500
چکیده :
Stock market prediction is a challenging task due to the nonlinear nature of financial time series data. Recent advances in machine learning and deep learning have offered new solutions to address some of these challenges. This research presents a novel integrated deep learning approach, combining the Extended Long Short-Term Memory (xLSTM) network with a Convolutional Neural Network (CNN) for stock market forecasting. To address the challenge of distribution shift in price signals, the Reversible Instance Normalization (RevIN) method is utilized for efficient input normalization. Additionally, wavelet denoising, combined with an adaptive thresholding technique, is used to mitigate the impact of noise in financial time series. The model is evaluated on the S\&P 500 index, and comparative experiments against advanced forecasting models, such as Extended Long Short-Term Memory for Time Series (xLSTM-TS), Temporal Convolutional Networks (TCN), and transformer-based time series model, demonstrate the superiority of our approach in accurately predicting stock prices and directional movements.
لیست مقالات
لیست مقالات بایگانی شده
Using GA and ML to Improve LoRa Network Performance
Yas Hosseini Tehrani - Seyed mojtaba Atarodi
Ultra-Low-Latency QCA Adder Design Using an Innovative Carry Generator
Mohammad Mahdi Cheraghi - Reza Omidi - Ali Azarpeyvand
True Class-E Design For Inductive Coupling Wireless Power Transfer Applications
Ali Asghar Razavi Haeri - Aminghasem Safarian - Ali Fotowat-Ahmady
Batch(offline) Reinforcement Learning for recommender system
Mohammad Amir Rezaei Gazik - Mehdy Roayaei
Virtual power plant participation in day-ahead and futures markets with a deep learning approach
Farzin Ghasemi Olanlari - Mohammad Fazel Dehghanniri - Turaj Amraee
Automotive radar target classification using micro-Doppler features
Amin Aghatabarroodbary - Mohammad Hassan Bastani - Fereidoon Behnia
A Novel HVDC Transmission System Based on Z-Source Converter
Mehdi Zareian Jahromi - Mohammadreza Mousavikhademi - Ebrahim Kazemi
Optimal Design of a Synchronous Reluctance Motor Using BioGeography-Based Optimization
Tohid Sharifi - Mojtaba Mirsalim
Development of Iterative Learning Control Method for Trajectory Tracking in Two-Dimensional Discrete-Time Systems
Meysam Azhdari - Tahereh Binazadeh - Soheila Abedi
ارائه یک روش جدید مبتنی بر ترکیب محدب برای مدلسازی اُفت دریچههای گاز بهمنظور حل مساله برنامهریزی تولید
حسین شریف زاده
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.0.4