0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Integration of Deep Learning Techniques in Stock Market Forecasting: xLSTM-CNN with RevIN and Adaptive Wavelet Denoising
نویسندگان :
Alireza Mohammadi
1
Ali Doustmohammadi
2
Masoud Shafiee
3
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
Time Series،Prediction،Stock Market،xLSTM،CNN،Wavelet Denoising،S&P 500
چکیده :
Stock market prediction is a challenging task due to the nonlinear nature of financial time series data. Recent advances in machine learning and deep learning have offered new solutions to address some of these challenges. This research presents a novel integrated deep learning approach, combining the Extended Long Short-Term Memory (xLSTM) network with a Convolutional Neural Network (CNN) for stock market forecasting. To address the challenge of distribution shift in price signals, the Reversible Instance Normalization (RevIN) method is utilized for efficient input normalization. Additionally, wavelet denoising, combined with an adaptive thresholding technique, is used to mitigate the impact of noise in financial time series. The model is evaluated on the S\&P 500 index, and comparative experiments against advanced forecasting models, such as Extended Long Short-Term Memory for Time Series (xLSTM-TS), Temporal Convolutional Networks (TCN), and transformer-based time series model, demonstrate the superiority of our approach in accurately predicting stock prices and directional movements.
لیست مقالات
لیست مقالات بایگانی شده
Kalman Filter Fusion Based on Interactive Multiple Model for Target Tracking in Wireless Sensor Networks
Zahra Zamani - Behrouz Safarinejadian
Remote Sensing Image Registration Using Fast Visual Saliency and Improved SIFT
Fatemeh Khalili - Farbod Razzazi - Abolfazl Hosseini
Analysis and Simulation of the Formation and dimensions of Gate-Defined Double Quantum Dots
Mahya Mostafavi - Majid Shalchian
Effective Rate Analysis of MISO Wireless Communication Systems over EGK Fading Channels
ّfereshteh Salimian Rizi - Abolfazl Falahati
Brain Effective Connectivity Comparision in Different States of Familiarity and Desiring Brands Confrontation: a Neuromarketing Study
Mahdi Taghaddossi - Mohammad Hasan Moradi
RSF: Reinforcement learning based hybrid split and federated learning for edge computing environments
Alireza Soleimani - Negar Anabestani - Mahmoud Momtazpour
Improving the Performance and Robustness of Non-Minimum Phase Systems Using Integrated Feedforward-IMC Technique
Saeedreza Tofighi
Dynamic Lane Changing Control of Vehicle Platoon
Abolfazl Saadati Moghadam - Mohammad Haeri
بررسی حفظ همراستایی در سامانههای مخابرات نوری فضای آزاد
مهدی زندی آتشبار - اصغر غلامی - فروغالسادات طباطبا
The change in Individual Alpha Frequency during Neurofeedback training
Maryam Dorvashi - Neda Behzadfar
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2