0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Integration of Deep Learning Techniques in Stock Market Forecasting: xLSTM-CNN with RevIN and Adaptive Wavelet Denoising
نویسندگان :
Alireza Mohammadi
1
Ali Doustmohammadi
2
Masoud Shafiee
3
1- دانشگاه صنعتی امیرکبیر
2- دانشگاه صنعتی امیرکبیر
3- دانشگاه صنعتی امیرکبیر
کلمات کلیدی :
Time Series،Prediction،Stock Market،xLSTM،CNN،Wavelet Denoising،S&P 500
چکیده :
Stock market prediction is a challenging task due to the nonlinear nature of financial time series data. Recent advances in machine learning and deep learning have offered new solutions to address some of these challenges. This research presents a novel integrated deep learning approach, combining the Extended Long Short-Term Memory (xLSTM) network with a Convolutional Neural Network (CNN) for stock market forecasting. To address the challenge of distribution shift in price signals, the Reversible Instance Normalization (RevIN) method is utilized for efficient input normalization. Additionally, wavelet denoising, combined with an adaptive thresholding technique, is used to mitigate the impact of noise in financial time series. The model is evaluated on the S\&P 500 index, and comparative experiments against advanced forecasting models, such as Extended Long Short-Term Memory for Time Series (xLSTM-TS), Temporal Convolutional Networks (TCN), and transformer-based time series model, demonstrate the superiority of our approach in accurately predicting stock prices and directional movements.
لیست مقالات
لیست مقالات بایگانی شده
Design of a Full Swing 20-Transistors Full Adder Cell based on CNTFET with High Speed and Low PDP
Amir Baghi Rahin - Afshin Kadivarian - Vahid Baghi Rahin
A Novel Generation Shedding Procedure for Power Management System in Industrial Power Plants
Erfan Asadi - Hamid Khoshkhoo - Ali Parizad
Robust Wireless Power Transfer by Self-Oscillating Controlled Inverter and Double-D Pads
Alireza Eikani - Mohammad Amirkhani - Hossein Jafari - Hesamodin Abdoli - Sadegh Vaez-Zadeh - Ghasem Rezazadeh
Privacy-Preserving Model Predictive Control Using Secure Multi-Party Computation
Saeed Adelipour - Mohammad Haeri
A COMPREHENSIVE DEEP LEARNING METHOD for SHORT-TERM LOAD FORECASTING
Mohammad Sayadlou - Mahdi Salay naderi - Mehrdad Abedi - Sajad Esmaeili - Mohammad Amini
تخمین کانال متغیربازمان در سیستمهای MIMO – موجمیلیمتری چندکاربره
زهرا معروفی - امیرحسین مولازاده - مهرداد اردبیلیپور
بررسی تحلیلی به کارگیری ریزشبکه برای مصرف کننده های پر مصرف مسکونی در ایران
عنایت الله محقق - حبیب رجبی مشهدی
Controlling Energy Consumption and Intelligent Manufacturing through an Energy-aware Scheduling Algorithm in Industrial Sector
Negin Shafinezhad - Maryam Mahmoudi - Hamid Abrishami - Vahid Baghishani
Human Action Recognition in Still Images Using ConViT
Seyed Rohollah Hosseyni - Sanaz Seyedin - Hassan Taheri
Application of Transfer Learning in Optimized Filter- Bank Regularized CSP to Classification of EEG Signals with Small Dataset
M. Moein Esfahani - Hossein Sadati
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2