0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
A Novel CNN-Based FSK Demodulator With Efficient FPGA Implementation
نویسندگان :
AmirHossein Sadough
1
Sina Rezaeeahvanouee
2
1- Department of Electrical Engineering, Shahid Rajaee Teacher Training University
2- Department of Electrical and Computer Engineering, University of Minnesota
کلمات کلیدی :
FSK،CNN،Demodulator،CFD،FPGA،BER،Implementation
چکیده :
Abstract— Nowadays, neural networks have become a new approach to achieving the destinations of researchers due to their accuracy. Neural networks are widely used in machine vision, image classification, and sound detection, but in the field of signal processing, it still has no content of the extent in the field of image processing. This is not due to the inability of deep learning to meet the needs of signal processing, but because that is an ultra-modern solution. This paper proposed a novel CNN-Based FSK demodulator (CFD) that uses a compact convolutional neural network as a special method to demodulate the FSK signal. The proposed CNN network has a minimal computational load and is optimized in terms of hardware implementation complexity. The designed CNN Network has three layers: a convolutional Layer, a Max-Pooling layer, and a fully connected Layer. The CFD is designed to demodulate an FSK signal of 20±1MHz with a bitrate of 1Mbps. The BER of lower than 10-6 has been achieved at Eb/N0=15dB. The resource utilization of implemented proposed demodulator on FPGA only shows 970 and 751, for LUT and FF respectively, which is minimal and indicates the efficiency of our method.
لیست مقالات
لیست مقالات بایگانی شده
Analytical Model for Estimating the Range of Troposcatter Active Radar
Mahdi Shiri - Mohammadreza Edalatzadeh
پیشبینی بلندمدت بار فصلی شبکه برق با استفاده از روش سری زمانی ETS
میلاد حاجی ابوالحسنی - محسن صفرزاده - زهرا عظیمی - سیدمرتضی میرباقری
Optimized ANFIS-based Control Design Using Genetic Algorithm to Obtain the Vaccination and Isolation Rates for the COVID-19
Zohreh Abbasi - Mohsen Shafieirad - Amir Hossein Amiri Mehra - Iman Zamani
A Fault-Tolerant Strategy for Load Non-Interrupted Power Supply in CHB Converter Based on Modified Level Shift PWM
Farzaneh Aslani-Gaznag - Armin Panahi - Yousef Neyshabouri
Compare of Machine Learning and Deep Learning Approaches for Human Activity Recognition
Babak Moradi - Mohammad Aghapour - Afshin Shirbandi
Semi-supervised Deep Reinforcement Learning in Decentralized Multi-Agent Collision Avoidance and Path Planning in a Complex Environment
Marzie Parooei - Mehdi Tale Masouleh - Ahmad Kalhor
A 23.4-31.9 GHz Tunable RF-MEMS Impedance Matching Network for 5G Power Amplifier
Fazel Ziraksaz - Alireza Hassanzadeh
شناسایی کمپلکس های پروتئینی با رویکرد خوشه بندی EM و با استفاده از داده های زیستی
مریم مولی وردیخانی - سعید جلیلی
Using Convolutional Neural Networks for Sudden Cardiac Death prediction
Sara Tavazo - Farideh Ebrahimi
Comparison of Channel Selection Methods for EEG Signal Classification
Soraya Charkas - MohammadBagher Shamsollahi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.3.2