0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Application of Statistical Techniques and Machine Learning in Forecasting Distribution Network Load: A Real Case Study on the Iranian Power System
نویسندگان :
Hossein Jafari
1
Mohammad Sadegh Sepasian
2
Fatemeh Teimori
3
1- دانشگاه شهید بهشتی
2- دانشگاه شهید بهشتی
3- دانشگاه شهید بهشتی
کلمات کلیدی :
Electricity demand forecasting،Short-term load forecasting،Statistical time series analysis،Machine learning،Power system management
چکیده :
Abstract— Accurate electricity demand forecasting is essential for effective and reliable management of power system resources, especially in minimizing forecasting errors, and managing random demands to increase economic efficiency. The study aims to develop an efficient and reliable short-term load forecasting model to reduce significant residential losses in Iran. Especially those caused by summer power outages related to increased demand. The research utilizes statistical time series analysis along with machine learning methods to reduce forecasting errors. It focuses on key variables, such as national consumption, while excluding the effects of temperature and holidays, broadening the variable range to improve forecasting precision. The study emphasizes the influence of rapid demand fluctuations and environmental factors on the stability of forecasting models, advocating for a variety of forecasting methodologies. A comparison is performed between statistical analysis and machine learning methodologies to determine the most effective strategies for various forecasting periods. The findings reveal that machine learning algorithms surpass traditional statistical methods, emphasizing their efficacy in addressing complicated demand forecasting challenges.
لیست مقالات
لیست مقالات بایگانی شده
A Novel CNN-Based FSK Demodulator With Efficient FPGA Implementation
AmirHossein Sadough - Sina Rezaeeahvanouee
Analysis of the DC Bias Effects on the Transformer Vibration Using a Multi-field Coupling Model
Amir Esmaeili Nezhad - Mohammad Hamed Samimi
طراحی سازه ی الکترودی بهینه جهت انجام آزمایشات امپدانس متری سلولی و غیر سلولی
علی منفردی - نسرین هاشمی - مهرداد ساویز
Transfer Learning Based Method for Human Activity Recognition
Saeedeh Zebhi - Smt Almodarresi - Vahid Abootalebi
A Novel Tunable LC Filter For Ultra High Frequency Applications
Davoud Razaghpour - Mir Majid Ghasemi - Amir Fathi
طراحی آنتن سرآتش پهن باند مبتنی بر پلاسمون پلاریتونهای سطحی جعلی
فرشاد ارغنده - بیژن عباسی آرند - مریم حصاری شرمه
Effect of Physical Characteristics on Artificial Neural Network Error Reduction for Indoor Propagation Modeling
SeyedehMounes Eslami - Amir Ahmad Shishegar
Optimization of 915nm laser diode asymmetric structure: experimental and theoretical studies in tandem
Seyed peyman Abbasi - Maryam Lajvardi - Arash Hodaei
A 30dB and 250μW High Linear Variable Gain Amplifier with Employing Gm-boosting and Common Mode Feedforward Techniques
Mehdi Shahabi
Formation of Singular Multi-Agent Systems via a New Iterative Learning Control Approach
Ali Raddanipour - Masoud Shafiee
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0