0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Application of Statistical Techniques and Machine Learning in Forecasting Distribution Network Load: A Real Case Study on the Iranian Power System
نویسندگان :
Hossein Jafari
1
Mohammad Sadegh Sepasian
2
Fatemeh Teimori
3
1- دانشگاه شهید بهشتی
2- دانشگاه شهید بهشتی
3- دانشگاه شهید بهشتی
کلمات کلیدی :
Electricity demand forecasting،Short-term load forecasting،Statistical time series analysis،Machine learning،Power system management
چکیده :
Abstract— Accurate electricity demand forecasting is essential for effective and reliable management of power system resources, especially in minimizing forecasting errors, and managing random demands to increase economic efficiency. The study aims to develop an efficient and reliable short-term load forecasting model to reduce significant residential losses in Iran. Especially those caused by summer power outages related to increased demand. The research utilizes statistical time series analysis along with machine learning methods to reduce forecasting errors. It focuses on key variables, such as national consumption, while excluding the effects of temperature and holidays, broadening the variable range to improve forecasting precision. The study emphasizes the influence of rapid demand fluctuations and environmental factors on the stability of forecasting models, advocating for a variety of forecasting methodologies. A comparison is performed between statistical analysis and machine learning methodologies to determine the most effective strategies for various forecasting periods. The findings reveal that machine learning algorithms surpass traditional statistical methods, emphasizing their efficacy in addressing complicated demand forecasting challenges.
لیست مقالات
لیست مقالات بایگانی شده
High-Performance Biosensor Based on SRR for Early Breast Cancer Detection
Hasti Enayattarighehkari - Sina Aramtan - Gholamreza Moradi - Farhad Azadi Namin
Formation of Singular Multi-Agent Systems via a New Iterative Learning Control Approach
Ali Raddanipour - Masoud Shafiee
Temporary Goal Method: A Solution for the Problem of Getting Stuck in Motion Planning Algorithms
Danial Khan mohamad zade - Samaneh Hosseini Semnani
Towards Blockchain-based Remote Management Systems for Patients with Movement Disorders
Behnaz Behara - Mehdi Delrobaei
Open Circuit Fault Detection and Diagnosis for Seven-Level Hybrid Active Neutral Point Clamped (ANPC) Multilevel Inverter
Mobin Azimipanah - Mahyar Hassanifar - Yousef Neyshabouri
Sensor Faults Diagnosis in T-S Fuzzy Discrete Descriptor Systems Using Design a New Unknown Input Observer
Masoud Shafiee - Amir Abolfazl Suratgar - Mehdi Mirshahi
Digitizing Analog ECGs: A Deep Learning Pipeline for Converting Historical Records into High-Quality Digital Signals
Sahar Askari - Somayeh Afrasiabi
Heterogeneous Coverage Path Planning For Multi- Agent systems with ACO and GA
Mohammad Hasan Jalili Bahabadi - ََAmir Mahdavi - Saeed Khankalantary
ساخت و مشخصه یابی حسگر گاز مونوکسیدکربن مبتنی بر هتروساختار p-n نیترید کربن گرافیتی متخلخل-اکسید مس
سمیرا جوانمردی - شیرین نصر اصفهانی - محمد حسین شیخی
Design and simulation of a surface acoustic wave based micro pressure sensor
Sohrab Ghasemi Bisheh - Mohammad Tahmasebipour - Fatemeh Anousheh
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.4.2