0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Application of Statistical Techniques and Machine Learning in Forecasting Distribution Network Load: A Real Case Study on the Iranian Power System
نویسندگان :
Hossein Jafari
1
Mohammad Sadegh Sepasian
2
Fatemeh Teimori
3
1- دانشگاه شهید بهشتی
2- دانشگاه شهید بهشتی
3- دانشگاه شهید بهشتی
کلمات کلیدی :
Electricity demand forecasting،Short-term load forecasting،Statistical time series analysis،Machine learning،Power system management
چکیده :
Abstract— Accurate electricity demand forecasting is essential for effective and reliable management of power system resources, especially in minimizing forecasting errors, and managing random demands to increase economic efficiency. The study aims to develop an efficient and reliable short-term load forecasting model to reduce significant residential losses in Iran. Especially those caused by summer power outages related to increased demand. The research utilizes statistical time series analysis along with machine learning methods to reduce forecasting errors. It focuses on key variables, such as national consumption, while excluding the effects of temperature and holidays, broadening the variable range to improve forecasting precision. The study emphasizes the influence of rapid demand fluctuations and environmental factors on the stability of forecasting models, advocating for a variety of forecasting methodologies. A comparison is performed between statistical analysis and machine learning methodologies to determine the most effective strategies for various forecasting periods. The findings reveal that machine learning algorithms surpass traditional statistical methods, emphasizing their efficacy in addressing complicated demand forecasting challenges.
لیست مقالات
لیست مقالات بایگانی شده
بررسی عملکرد الگوریتم یادگیری تقلیدی در آموزش شبکه عصبی کاملا متصل برای حل مسئله مسیریابی در محیطهای چندعامله
محمد روغنی - سمانه حسینی سمنانی
Improved Attention U-Net combined with Conditional Random Field for Ischemic Lesion Segmentation from Magnetic Resonance Images
Ali Rezaei - Asieh Khosravanian - Habibollah Danyali - Kamran Kazemi - Ardalan Aarabi
An Investigation of Hardware Implementation of Multi-Valued Logic Using Different Nanodevices
Abdolah Amirany - Kian Jafari - Mohammad Hossein Moaiyeri
Application of Statistical Techniques and Machine Learning in Forecasting Distribution Network Load: A Real Case Study on the Iranian Power System
Hossein Jafari - Mohammad Sadegh Sepasian - Fatemeh Teimori
Melanoma Detection Using Multi-Color LBP-FPl and Optimized VGG16
Vida Esmaeili - Mahmood Mohassel Feghhi
3D Modeling of a Superconducting Transition Edge Detector
Samaneh Ansari - Rana Nazifi - Mehdi Yaghoubi Arzefouni - Roya Mohajeri - Seyed Iman Mirzaei - Mehdi Fardmanesh
Development of Iterative Learning Control Method Based on Markov Parameters for High-Order Discrete-Time Singular Systems
Meysam Azhdari - Tahereh Binazadeh - Ali Gholami
Market-oriented Optimal Control Strategy for an Integrated Energy Storage System and Wind Farm
Sajad Esameili - Mohammad Amini - Amir Khorsandi - Seyed Hamid Fathi - Seyed Hossein Hosseinian - Jafar Millimonfared
پیشنهاد یک ساختار جدید AC/DC مبتنی بر مبدلهای SEPIC و CUK بهبودیافته برای کاربرد شارژر موتورسیکلتهای الکتریکی
سجاد قابلی ثانی - رحیم عجبی فرشباف - میثم صادقی - محمد خدایاری
A Modified Low Rank Learning Based on Iterative Nuclear Weighting in Ripplet Transform for Denoising MR Images
Nooshin Farhangian - Mansour Nejati Jahromi - Mahdi Nouri
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.8.0