0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Application of Statistical Techniques and Machine Learning in Forecasting Distribution Network Load: A Real Case Study on the Iranian Power System
نویسندگان :
Hossein Jafari
1
Mohammad Sadegh Sepasian
2
Fatemeh Teimori
3
1- دانشگاه شهید بهشتی
2- دانشگاه شهید بهشتی
3- دانشگاه شهید بهشتی
کلمات کلیدی :
Electricity demand forecasting،Short-term load forecasting،Statistical time series analysis،Machine learning،Power system management
چکیده :
Abstract— Accurate electricity demand forecasting is essential for effective and reliable management of power system resources, especially in minimizing forecasting errors, and managing random demands to increase economic efficiency. The study aims to develop an efficient and reliable short-term load forecasting model to reduce significant residential losses in Iran. Especially those caused by summer power outages related to increased demand. The research utilizes statistical time series analysis along with machine learning methods to reduce forecasting errors. It focuses on key variables, such as national consumption, while excluding the effects of temperature and holidays, broadening the variable range to improve forecasting precision. The study emphasizes the influence of rapid demand fluctuations and environmental factors on the stability of forecasting models, advocating for a variety of forecasting methodologies. A comparison is performed between statistical analysis and machine learning methodologies to determine the most effective strategies for various forecasting periods. The findings reveal that machine learning algorithms surpass traditional statistical methods, emphasizing their efficacy in addressing complicated demand forecasting challenges.
لیست مقالات
لیست مقالات بایگانی شده
Diagnosis of Covid 19 disease, flu, allergies, colds
Mahyar Mohammady - Marzieh Kamali
A Novel Model for Backcasting the Environmental Sustainability in Iran’s Electricity Supply Mix
Mohammad Saeid Atabaki - Mohammad Mohammadi
Hand Movment Decoding from EEG Signals Using Kalman Filter with Parameters Estimated via Neural Networks and Least Squares Method
Pegah Khoshkavandi - Mohammad B Shamsollahi - Ali Motie Nasrabadi
حسگر زیستی نانومتری حساس با زیرلایه غیرهمگن برای تشخیص سلول های سرطانی
پریسا مرادی هارونی - محمود رفائی بوکت
Large Scale Indoor VLC Positioning Using Image Sensor with Limited Field of View
Arezoo Kabiri - Foroogh Sadat Tabataba
An Ensemble Model for Sleep Stages Classification
Sahar Hassanzadeh Mostafaei - Jafar Tanha - Amir Sharafkhaneh - Zohair Hassanzadeh Mostafaei - Mohammed Hussein Ali Al-jaf - Alireza Fakhim babaei
Covert Communication and Secure Transmission in the Presence of Multiple Antenna Untrusted Relay
Mohammad Reza Yari - Paeiz Azmi - Mahyar Ghasedi - Moslem Forouzesh - Hamid Saeedi
Broadband Two Layers 1-Bit Metal-Only Transmitarray with Polarization Conversion Technique
Majid Karimipour - Iman Aryanian
مقایسه پارامترهای عملکردی کمپرسورهای 4:2 در تکنولوژی FinFET و GAA-NWFET
پگاه زکیان - راهبه نیارکی اصلی
Deep Learning based Electrical Load Forecasting using Temporal Fusion Transformer and Trend-Seasonal Decomposition
Ehsan Saadipour-Hanzaie - Mohammad-Amin Pourmoosavi - Turaj Amraee
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.1