0% Complete
صفحه اصلی
/
سی و سومین کنفرانس بین المللی مهندسی برق
Application of Statistical Techniques and Machine Learning in Forecasting Distribution Network Load: A Real Case Study on the Iranian Power System
نویسندگان :
Hossein Jafari
1
Mohammad Sadegh Sepasian
2
Fatemeh Teimori
3
1- دانشگاه شهید بهشتی
2- دانشگاه شهید بهشتی
3- دانشگاه شهید بهشتی
کلمات کلیدی :
Electricity demand forecasting،Short-term load forecasting،Statistical time series analysis،Machine learning،Power system management
چکیده :
Abstract— Accurate electricity demand forecasting is essential for effective and reliable management of power system resources, especially in minimizing forecasting errors, and managing random demands to increase economic efficiency. The study aims to develop an efficient and reliable short-term load forecasting model to reduce significant residential losses in Iran. Especially those caused by summer power outages related to increased demand. The research utilizes statistical time series analysis along with machine learning methods to reduce forecasting errors. It focuses on key variables, such as national consumption, while excluding the effects of temperature and holidays, broadening the variable range to improve forecasting precision. The study emphasizes the influence of rapid demand fluctuations and environmental factors on the stability of forecasting models, advocating for a variety of forecasting methodologies. A comparison is performed between statistical analysis and machine learning methodologies to determine the most effective strategies for various forecasting periods. The findings reveal that machine learning algorithms surpass traditional statistical methods, emphasizing their efficacy in addressing complicated demand forecasting challenges.
لیست مقالات
لیست مقالات بایگانی شده
Risk-based Expansion planning of Active Distribution Networks in the Presence of Electric Vehicles to improve the Reliability
Ali Razzaghi
سیستم تشخیص فعالیت مبتنی بر مدلسازی تصویری تنک اطلاعات حالت کانال و شبکه عصبی کانولوشنی
علیرضا ابوالقاسمی - سید محمد تقی المدرسی - سید مجتبی آقایی
SGG-Net: Skeleton and Graph-Based Neural Network Approaches for Grasping Objects
AliReza Beigy - Farbod Azimmohseni - Ali Sabzejou - Mehdi Tale Masouleh - Ahmad Kalhor
تحلیل عدم تعادل جریان سه فاز شبکه فشارضعیف توزیع در پی قطع هادی نول متصل به ترانسفورماتور با استفاده از مولفههای متقارن
احمد صالحی دوبخشری
High Performance and Low Power Spintronic Binarized Neural Network Hardware Accelerator
Milad Tanavardi Nasab - Arefe Amirany - Mohammad Hossein Moaiyeri - Kian Jafari
Model Reference Adaptive Control for Nonlinear Systems in the Presence of Unknown External Disturbances
Ehsan Nazemorroaya - Mohsen Shafieirad - Majid Hajatipour
Global Finite-Time Nonlinear Observers for a Class of Nonlinear Systems Subjected to Mismatched Uncertainties
َAli Abooee - Saeed Amiri - Mohammad Hadi Rezaei
Generalized Robust Control Approach for an Aerial Robot in Grasping Oscillatory Objects
Mirshams Baha - Fariborz Saghafi
Distributed Deep Reinforcement Learning for Radio Resource Management in O-RAN
Ahmad Ahmadi Siahpoush - Vahid Shah-Mansouri
Modeling of dielectrophoretic single-stage continuous separation of Escherichia coli K38 in a microfluidic channel
Saeed Saedy - Navid Alaei Sheini - Shahrzad Ajabi
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3