0% Complete
صفحه اصلی
/
سی و یکمین کنفرانس بین المللی مهندسی برق
Improved Attention U-Net combined with Conditional Random Field for Ischemic Lesion Segmentation from Magnetic Resonance Images
نویسندگان :
Ali Rezaei
1
Asieh Khosravanian
2
Habibollah Danyali
3
Kamran Kazemi
4
Ardalan Aarabi
5
1- دانشگاه صنعتی شیراز
2- دانشگاه صنعتی شیراز
3- دانشگاه صنعتی شیراز
4- دانشگاه صنعتی شیراز
5- University of Picardy Jules Verne
کلمات کلیدی :
Ischemic Stroke،Segmentation،Deep Learning،U-Net،Conditional Random Field
چکیده :
Stroke Lesion segmentation from magnetic resonance images is of great research interest due to its capability in providing appropriate clinical information for effective treatment of stroke. Deep learning methods have demonstrated promising results in medical image segmentation and U-Net is one of the most effective models. Nevertheless, these algorithms in the area of ischemic stroke lesion segmentation are in first stages of development and they lack performance compared to other problems for instance brain tumor segmentation. In this paper, we improved U-Net algorithm by applying blocks consist of depth-wise separable convolutions with skip connections instead of normal convolution layers and new attention blocks. Based on these improvements, the new architecture has better performance and accuracy with fewer parameter which would need simpler equipment for implementation. We utilized 3D fully connected Conditional Random Field (CRF) as post processing to improve the model prediction. Experimental results showed that the proposed end-to-end deep encoder-decoder model has a significant improvement compared to existing deep learning methods on the publicly available Anatomical Tracings of Lesion After Stroke (ATLAS) dataset.
لیست مقالات
لیست مقالات بایگانی شده
A Novel Low Torque Ripple Hexagon Biased Flux Doubly Salient Permanent Magnet Motor
Mohammad Amirkhani - Behnam Mohammadian Mosammam - Mojtaba Mirsalim
Design and Determing Two Separate Rotor Axial Flux Permanent Magnet Motor Load and Efficinecy
Siamak Omrani - Ahmad Darabi
Design and simulation of an interleaved soft-switched CW-VM based boost converter for high power and high voltage applications
Soheil Hasani - Reza Beiranvand
A Wideband PLL with Programmable LC VCO with 5.1 to 7.9GHz Lock Range
Mohsen Azimikia - Arash Esmaili
بررسی توان و افزایش بازدهی در فرستنده سوئیچینگ لورن
عادل رضائیان - احمد عفیفی - جمشید ده پهلوانی
Manifold Learning-Assisted Physical Layer Key Generation for LoRaWAN: an Experimental Study
Hossein Aghajari - Hamed Bakhtiari babadegani, - Mehdi Naderi soorki - Sajad Ahmadinabi - Seyed mohsen Ahmadi
A Novel Tunable LC Filter For Ultra High Frequency Applications
Davoud Razaghpour - Mir Majid Ghasemi - Amir Fathi
Design and Demonstration of a Novel Microfluidic Channel for Trapping Circulating Tumor Cells with Magnetophoresis
Atin Bakhshi - Seyed Ehsan Hosseininasab - Vahid Ghafouri - Mehdi Rahmanian - Majid Badiei Rostami
An improved ECG segmentation method based on adaptive Hermite functions
Abazar Arabameri - Sajad Haghzad Klidbary
Type-2 fuzzy expert system for management of smart home with combining renewable resources
Ali Beheshtikhoo - Mahdi Pourgholi - Iman Khazaee
بیشتر
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 42.5.3